Research Article
BibTex RIS Cite
Year 2022, Volume: 12 Issue: 2, 136 - 153, 31.12.2022
https://doi.org/10.55024/buyasambid.1131891

Abstract

References

  • Bhinder, M. A., Babarit, A., Gentaz, L., & Ferrant, P. (2015). Potential time domain model with viscous correction and CFD analysis of a generic surging floating wave energy converter. International Journal of Marine Energy, 10, 70-96.
  • Chandrasekaran, S., & Sricharan, V. V. S. (2019). Improved efficiency of a floating wave energy converter under different wave-approach angles: numerical and experimental investigations. Journal of Ocean Engineering and Marine Energy, 5(1), 41-50.
  • Chen, F., Duan, D., Han, Q., Yang, X., & Zhao, F. (2019). Study on force and wave energy conversion efficiency of buoys in low wave energy density seas. Energy Conversion and Management, 182, 191-200.
  • Chen, W., Dolguntseva, I., Savin, A., Zhang, Y., Li, W., Svensson, O., & Leijon, M. (2017). Numerical modelling of a point-absorbing wave energy converter in irregular and extreme waves. Applied Ocean Research, 63, 90-105.
  • Clément, A., McCullen, P., Falcão, A., Fiorentino, A., Gardner, F., Hammarlund, K., ... & Thorpe, T. (2002). Wave energy in Europe: current status and perspectives. Renewable and sustainable energy reviews, 6(5), 405-431.
  • Dai, Y., Chen, Y., & Xie, L. (2017). A study on a novel two-body floating wave energy converter. Ocean Engineering, 130, 407-416.
  • Do, H. T., Dang, T. D., & Ahn, K. K. (2018). A multi-point-absorber wave-energy converter for the stabilization of output power. Ocean engineering, 161, 337-349.
  • Eriksson, M., Isberg, J., & Leijon, M. (2005). Hydrodynamic modeling of a direct drive wave energy converter. International Journal of Engineering Science, 43(17-18), 1377-1387.
  • Ghasemi, A., Anbarsooz, M., Malvandi, A., Ghasemi, A., & Hedayati, F. (2017). A nonlinear computational modeling of wave energy converters: A tethered point absorber and a bottom-hinged flap device. Renewable energy, 103, 774-785.
  • Joe, H., Kim, M., Wi, S. M., Kwon, H. S., & Yu, S. C. (2014, September). Development of mooring-less robotic buoy system using wave powered renewable energy. In 2014 Oceans-St. John's (pp. 1-6). IEEE.
  • Karakose, P. (2019) Development Of Experımental Offshore Type Of Wave Energy Converter, Fırat University, Master thesis,Elazig.
  • Koca, A., & Yamaç, H. İ. (2017, November). Oscillating Water Column Analysis in Numerical Wave Tank with Variable Base Geometries. In International Advanced Researches & Engineering Congress 2017 Proceeding Book (p. 201). Dr. R. HALICIOGLU.
  • Lee, S., Ko, K., & Hong, J. W. (2020). Comparative study on the breaking waves by a piston-type wavemaker in experiments and SPH simulations. Coastal Engineering Journal, 62(2), 267-284.
  • Lejerskog, E., Boström, C., Hai, L., Waters, R., & Leijon, M. (2015). Experimental results on power absorption from a wave energy converter at the Lysekil wave energy research site. Renewable energy, 77, 9-14.
  • Liu, Z., Han, Z., Shi, H., & Yang, W. (2018). Experimental study on multi-level overtopping wave energy convertor under regular wave conditions. International Journal of Naval Architecture and Ocean Engineering, 10(5), 651-659.
  • Ozkop, E., & Altas, I. H. (2017). Control, power and electrical components in wave energy conversion systems: A review of the technologies. Renewable and Sustainable Energy Reviews, 67, 106-115.
  • Perez-Collazo, C., Greaves, D., & Iglesias, G. (2018, June). Proof of concept of a novel hybrid wind-wave energy converter. In International Conference on Offshore Mechanics and Arctic Engineering (Vol. 51319, p. V010T09A019). American Society of Mechanical Engineers.
  • Rhinefrank, K., Schacher, A., Prudell, J., Cruz, J., Stillinger, C., Naviaux, D., ... & Cox, D. (2013). Numerical analysis and scaled high resolution tank testing of a novel wave energy converter. Journal of offshore mechanics and Arctic engineering, 135(4).
  • S. Mert, (2012) A Desıgn And Experımental Study On Wave Power Conversıon System, Istanbul Technical University, Master thesis,İstanbul.
  • Sergiienko, N. Y., Cazzolato, B. S., Ding, B., Hardy, P., & Arjomandi, M. (2017). Performance comparison of the floating and fully submerged quasi-point absorber wave energy converters. Renewable energy, 108, 425-437.
  • Singh, P. M., Chen, Z., & Choi, Y. D. (2015). Component structural analysis on 15kW class wave energy converter. Journal of Advanced Marine Engineering and Technology, 39(8), 821-827.
  • So, R., Michelen, C., Bosma, B., Lenee-Bluhm, P., & Brekken, T. K. (2017). Statistical analysis of a 1: 7 scale field test wave energy converter using WEC-sim. IEEE Transactions on Sustainable Energy, 8(3), 1118-1126.
  • Tom, N. M., Lawson, M. J., Yu, Y. H., & Wright, A. D. (2016). Development of a nearshore oscillating surge wave energy converter with variable geometry. Renewable Energy, 96, 410-424.
  • Wahyudie, A., & Susilo, T. B. (2018, February). Design of a laboratory scale linear hydraulic wave energy converter. In 2018 5th International Conference on Renewable Energy: Generation and Applications (ICREGA) (pp. 220-222). IEEE.
  • Wan, L., Greco, M., Lugni, C., Gao, Z., & Moan, T. (2017). A combined wind and wave energy-converter concept in survival mode: Numerical and experimental study in regular waves with a focus on water entry and exit. Applied Ocean Research, 63, 200-216.
  • Yamaç, H. İ., & Koca, A. (2021). Numerical analysis of wave energy converting systems in case of using piezoelectric materials for energy harvesting. Journal of Marine Engineering & Technology, 20(2), 138-149.
  • Yamaç, H. İ., & Koca, A. (2017, September). Numerical wave tank analysis for energy harvesting with oscillating water column. In International Conference Mechatronics (pp. 726-734). Springer, Cham.
  • Youssef, J., Matar, J., Rahme, P., & Bou-Mosleh, C. (2016). A nearshore heaving-buoy sea wave energy converter for power production. Procedia Engineering, 145, 136-143.
Year 2022, Volume: 12 Issue: 2, 136 - 153, 31.12.2022
https://doi.org/10.55024/buyasambid.1131891

Abstract

References

  • Bhinder, M. A., Babarit, A., Gentaz, L., & Ferrant, P. (2015). Potential time domain model with viscous correction and CFD analysis of a generic surging floating wave energy converter. International Journal of Marine Energy, 10, 70-96.
  • Chandrasekaran, S., & Sricharan, V. V. S. (2019). Improved efficiency of a floating wave energy converter under different wave-approach angles: numerical and experimental investigations. Journal of Ocean Engineering and Marine Energy, 5(1), 41-50.
  • Chen, F., Duan, D., Han, Q., Yang, X., & Zhao, F. (2019). Study on force and wave energy conversion efficiency of buoys in low wave energy density seas. Energy Conversion and Management, 182, 191-200.
  • Chen, W., Dolguntseva, I., Savin, A., Zhang, Y., Li, W., Svensson, O., & Leijon, M. (2017). Numerical modelling of a point-absorbing wave energy converter in irregular and extreme waves. Applied Ocean Research, 63, 90-105.
  • Clément, A., McCullen, P., Falcão, A., Fiorentino, A., Gardner, F., Hammarlund, K., ... & Thorpe, T. (2002). Wave energy in Europe: current status and perspectives. Renewable and sustainable energy reviews, 6(5), 405-431.
  • Dai, Y., Chen, Y., & Xie, L. (2017). A study on a novel two-body floating wave energy converter. Ocean Engineering, 130, 407-416.
  • Do, H. T., Dang, T. D., & Ahn, K. K. (2018). A multi-point-absorber wave-energy converter for the stabilization of output power. Ocean engineering, 161, 337-349.
  • Eriksson, M., Isberg, J., & Leijon, M. (2005). Hydrodynamic modeling of a direct drive wave energy converter. International Journal of Engineering Science, 43(17-18), 1377-1387.
  • Ghasemi, A., Anbarsooz, M., Malvandi, A., Ghasemi, A., & Hedayati, F. (2017). A nonlinear computational modeling of wave energy converters: A tethered point absorber and a bottom-hinged flap device. Renewable energy, 103, 774-785.
  • Joe, H., Kim, M., Wi, S. M., Kwon, H. S., & Yu, S. C. (2014, September). Development of mooring-less robotic buoy system using wave powered renewable energy. In 2014 Oceans-St. John's (pp. 1-6). IEEE.
  • Karakose, P. (2019) Development Of Experımental Offshore Type Of Wave Energy Converter, Fırat University, Master thesis,Elazig.
  • Koca, A., & Yamaç, H. İ. (2017, November). Oscillating Water Column Analysis in Numerical Wave Tank with Variable Base Geometries. In International Advanced Researches & Engineering Congress 2017 Proceeding Book (p. 201). Dr. R. HALICIOGLU.
  • Lee, S., Ko, K., & Hong, J. W. (2020). Comparative study on the breaking waves by a piston-type wavemaker in experiments and SPH simulations. Coastal Engineering Journal, 62(2), 267-284.
  • Lejerskog, E., Boström, C., Hai, L., Waters, R., & Leijon, M. (2015). Experimental results on power absorption from a wave energy converter at the Lysekil wave energy research site. Renewable energy, 77, 9-14.
  • Liu, Z., Han, Z., Shi, H., & Yang, W. (2018). Experimental study on multi-level overtopping wave energy convertor under regular wave conditions. International Journal of Naval Architecture and Ocean Engineering, 10(5), 651-659.
  • Ozkop, E., & Altas, I. H. (2017). Control, power and electrical components in wave energy conversion systems: A review of the technologies. Renewable and Sustainable Energy Reviews, 67, 106-115.
  • Perez-Collazo, C., Greaves, D., & Iglesias, G. (2018, June). Proof of concept of a novel hybrid wind-wave energy converter. In International Conference on Offshore Mechanics and Arctic Engineering (Vol. 51319, p. V010T09A019). American Society of Mechanical Engineers.
  • Rhinefrank, K., Schacher, A., Prudell, J., Cruz, J., Stillinger, C., Naviaux, D., ... & Cox, D. (2013). Numerical analysis and scaled high resolution tank testing of a novel wave energy converter. Journal of offshore mechanics and Arctic engineering, 135(4).
  • S. Mert, (2012) A Desıgn And Experımental Study On Wave Power Conversıon System, Istanbul Technical University, Master thesis,İstanbul.
  • Sergiienko, N. Y., Cazzolato, B. S., Ding, B., Hardy, P., & Arjomandi, M. (2017). Performance comparison of the floating and fully submerged quasi-point absorber wave energy converters. Renewable energy, 108, 425-437.
  • Singh, P. M., Chen, Z., & Choi, Y. D. (2015). Component structural analysis on 15kW class wave energy converter. Journal of Advanced Marine Engineering and Technology, 39(8), 821-827.
  • So, R., Michelen, C., Bosma, B., Lenee-Bluhm, P., & Brekken, T. K. (2017). Statistical analysis of a 1: 7 scale field test wave energy converter using WEC-sim. IEEE Transactions on Sustainable Energy, 8(3), 1118-1126.
  • Tom, N. M., Lawson, M. J., Yu, Y. H., & Wright, A. D. (2016). Development of a nearshore oscillating surge wave energy converter with variable geometry. Renewable Energy, 96, 410-424.
  • Wahyudie, A., & Susilo, T. B. (2018, February). Design of a laboratory scale linear hydraulic wave energy converter. In 2018 5th International Conference on Renewable Energy: Generation and Applications (ICREGA) (pp. 220-222). IEEE.
  • Wan, L., Greco, M., Lugni, C., Gao, Z., & Moan, T. (2017). A combined wind and wave energy-converter concept in survival mode: Numerical and experimental study in regular waves with a focus on water entry and exit. Applied Ocean Research, 63, 200-216.
  • Yamaç, H. İ., & Koca, A. (2021). Numerical analysis of wave energy converting systems in case of using piezoelectric materials for energy harvesting. Journal of Marine Engineering & Technology, 20(2), 138-149.
  • Yamaç, H. İ., & Koca, A. (2017, September). Numerical wave tank analysis for energy harvesting with oscillating water column. In International Conference Mechatronics (pp. 726-734). Springer, Cham.
  • Youssef, J., Matar, J., Rahme, P., & Bou-Mosleh, C. (2016). A nearshore heaving-buoy sea wave energy converter for power production. Procedia Engineering, 145, 136-143.

Düşük Dalga Yüksekliklerinde Maksimum Enerji Yakalamak için Yenilikçi Bir Dalga Enerji Dönüştürücü Tasarımı

Year 2022, Volume: 12 Issue: 2, 136 - 153, 31.12.2022
https://doi.org/10.55024/buyasambid.1131891

Abstract

Elektrisksel enerji elde etmek için genellikle Dalga Enerji Dönüştürücü sistemler kullanılır. Değişken deniz koşullarında maksimum güç yakalamak gerekmektedir. Güç dönüşüm sistemlerinin kontrolünde ise süreklilik önemlidir. Fakat yakın kıyıda dalga enerjisi düşük kuvvet ve yüksek hıza sahiptir. Bu nedenle bu çalışmada bu koşullar için uygun yeni bir dalga enerji dönüştürücünün performansı incelenmiştir. Bu sistemin performansı laboratuvar koşullarında test edilmiştir. Bu tasarımın amacı düşük yükseklikteki dalgalardan maksimum güç yakalamaktır. Sonuçlarda dalga yüksekliği arttıkça tüm periyotlar için verimin düşmesine neden olmuştur. Maksimum verim 2 cm dalga yüksekliğinde elde edilmiştir. Bu dalga yüksekliğinde verim, 5 s’lik periyotta en yüksek değere (%20.3) ulaşmıştır. Bu durumda, bu prototipin düşük dalga yüksekliği , yüksek dalga periyodu için uygun olduğu söylenebilir.

References

  • Bhinder, M. A., Babarit, A., Gentaz, L., & Ferrant, P. (2015). Potential time domain model with viscous correction and CFD analysis of a generic surging floating wave energy converter. International Journal of Marine Energy, 10, 70-96.
  • Chandrasekaran, S., & Sricharan, V. V. S. (2019). Improved efficiency of a floating wave energy converter under different wave-approach angles: numerical and experimental investigations. Journal of Ocean Engineering and Marine Energy, 5(1), 41-50.
  • Chen, F., Duan, D., Han, Q., Yang, X., & Zhao, F. (2019). Study on force and wave energy conversion efficiency of buoys in low wave energy density seas. Energy Conversion and Management, 182, 191-200.
  • Chen, W., Dolguntseva, I., Savin, A., Zhang, Y., Li, W., Svensson, O., & Leijon, M. (2017). Numerical modelling of a point-absorbing wave energy converter in irregular and extreme waves. Applied Ocean Research, 63, 90-105.
  • Clément, A., McCullen, P., Falcão, A., Fiorentino, A., Gardner, F., Hammarlund, K., ... & Thorpe, T. (2002). Wave energy in Europe: current status and perspectives. Renewable and sustainable energy reviews, 6(5), 405-431.
  • Dai, Y., Chen, Y., & Xie, L. (2017). A study on a novel two-body floating wave energy converter. Ocean Engineering, 130, 407-416.
  • Do, H. T., Dang, T. D., & Ahn, K. K. (2018). A multi-point-absorber wave-energy converter for the stabilization of output power. Ocean engineering, 161, 337-349.
  • Eriksson, M., Isberg, J., & Leijon, M. (2005). Hydrodynamic modeling of a direct drive wave energy converter. International Journal of Engineering Science, 43(17-18), 1377-1387.
  • Ghasemi, A., Anbarsooz, M., Malvandi, A., Ghasemi, A., & Hedayati, F. (2017). A nonlinear computational modeling of wave energy converters: A tethered point absorber and a bottom-hinged flap device. Renewable energy, 103, 774-785.
  • Joe, H., Kim, M., Wi, S. M., Kwon, H. S., & Yu, S. C. (2014, September). Development of mooring-less robotic buoy system using wave powered renewable energy. In 2014 Oceans-St. John's (pp. 1-6). IEEE.
  • Karakose, P. (2019) Development Of Experımental Offshore Type Of Wave Energy Converter, Fırat University, Master thesis,Elazig.
  • Koca, A., & Yamaç, H. İ. (2017, November). Oscillating Water Column Analysis in Numerical Wave Tank with Variable Base Geometries. In International Advanced Researches & Engineering Congress 2017 Proceeding Book (p. 201). Dr. R. HALICIOGLU.
  • Lee, S., Ko, K., & Hong, J. W. (2020). Comparative study on the breaking waves by a piston-type wavemaker in experiments and SPH simulations. Coastal Engineering Journal, 62(2), 267-284.
  • Lejerskog, E., Boström, C., Hai, L., Waters, R., & Leijon, M. (2015). Experimental results on power absorption from a wave energy converter at the Lysekil wave energy research site. Renewable energy, 77, 9-14.
  • Liu, Z., Han, Z., Shi, H., & Yang, W. (2018). Experimental study on multi-level overtopping wave energy convertor under regular wave conditions. International Journal of Naval Architecture and Ocean Engineering, 10(5), 651-659.
  • Ozkop, E., & Altas, I. H. (2017). Control, power and electrical components in wave energy conversion systems: A review of the technologies. Renewable and Sustainable Energy Reviews, 67, 106-115.
  • Perez-Collazo, C., Greaves, D., & Iglesias, G. (2018, June). Proof of concept of a novel hybrid wind-wave energy converter. In International Conference on Offshore Mechanics and Arctic Engineering (Vol. 51319, p. V010T09A019). American Society of Mechanical Engineers.
  • Rhinefrank, K., Schacher, A., Prudell, J., Cruz, J., Stillinger, C., Naviaux, D., ... & Cox, D. (2013). Numerical analysis and scaled high resolution tank testing of a novel wave energy converter. Journal of offshore mechanics and Arctic engineering, 135(4).
  • S. Mert, (2012) A Desıgn And Experımental Study On Wave Power Conversıon System, Istanbul Technical University, Master thesis,İstanbul.
  • Sergiienko, N. Y., Cazzolato, B. S., Ding, B., Hardy, P., & Arjomandi, M. (2017). Performance comparison of the floating and fully submerged quasi-point absorber wave energy converters. Renewable energy, 108, 425-437.
  • Singh, P. M., Chen, Z., & Choi, Y. D. (2015). Component structural analysis on 15kW class wave energy converter. Journal of Advanced Marine Engineering and Technology, 39(8), 821-827.
  • So, R., Michelen, C., Bosma, B., Lenee-Bluhm, P., & Brekken, T. K. (2017). Statistical analysis of a 1: 7 scale field test wave energy converter using WEC-sim. IEEE Transactions on Sustainable Energy, 8(3), 1118-1126.
  • Tom, N. M., Lawson, M. J., Yu, Y. H., & Wright, A. D. (2016). Development of a nearshore oscillating surge wave energy converter with variable geometry. Renewable Energy, 96, 410-424.
  • Wahyudie, A., & Susilo, T. B. (2018, February). Design of a laboratory scale linear hydraulic wave energy converter. In 2018 5th International Conference on Renewable Energy: Generation and Applications (ICREGA) (pp. 220-222). IEEE.
  • Wan, L., Greco, M., Lugni, C., Gao, Z., & Moan, T. (2017). A combined wind and wave energy-converter concept in survival mode: Numerical and experimental study in regular waves with a focus on water entry and exit. Applied Ocean Research, 63, 200-216.
  • Yamaç, H. İ., & Koca, A. (2021). Numerical analysis of wave energy converting systems in case of using piezoelectric materials for energy harvesting. Journal of Marine Engineering & Technology, 20(2), 138-149.
  • Yamaç, H. İ., & Koca, A. (2017, September). Numerical wave tank analysis for energy harvesting with oscillating water column. In International Conference Mechatronics (pp. 726-734). Springer, Cham.
  • Youssef, J., Matar, J., Rahme, P., & Bou-Mosleh, C. (2016). A nearshore heaving-buoy sea wave energy converter for power production. Procedia Engineering, 145, 136-143.

A Novel Rotor Type Wave Energy Converter Design for Maximum Energy Captured in Low Wave Heights

Year 2022, Volume: 12 Issue: 2, 136 - 153, 31.12.2022
https://doi.org/10.55024/buyasambid.1131891

Abstract

Wave energy converter system (WEC) is generally used by obtaining of electrical energy. Maximise power capture is needed a range of sea-states. Continuity is improved to control of power take off. But wave energy have o lower force and a higher speed in onhore. Therfore, this paper is investigated the novel rotor type wave energy converter performance in this wave suitable conditional. The performance of this system is tested in laboratory condiotions.This aim of design is maximum power absorption from low wave height of waves. Results show that the higher wave height has caused the efficiency to decrease in all periods. The highest efficiency is obtained at a minimum wave height of 2 cm. At this wave height, the efficiency has reached its highest value when the period is 5 s (20.3%). In this case, it makes this prototype suitable for seas with low wave height and high wave period.

References

  • Bhinder, M. A., Babarit, A., Gentaz, L., & Ferrant, P. (2015). Potential time domain model with viscous correction and CFD analysis of a generic surging floating wave energy converter. International Journal of Marine Energy, 10, 70-96.
  • Chandrasekaran, S., & Sricharan, V. V. S. (2019). Improved efficiency of a floating wave energy converter under different wave-approach angles: numerical and experimental investigations. Journal of Ocean Engineering and Marine Energy, 5(1), 41-50.
  • Chen, F., Duan, D., Han, Q., Yang, X., & Zhao, F. (2019). Study on force and wave energy conversion efficiency of buoys in low wave energy density seas. Energy Conversion and Management, 182, 191-200.
  • Chen, W., Dolguntseva, I., Savin, A., Zhang, Y., Li, W., Svensson, O., & Leijon, M. (2017). Numerical modelling of a point-absorbing wave energy converter in irregular and extreme waves. Applied Ocean Research, 63, 90-105.
  • Clément, A., McCullen, P., Falcão, A., Fiorentino, A., Gardner, F., Hammarlund, K., ... & Thorpe, T. (2002). Wave energy in Europe: current status and perspectives. Renewable and sustainable energy reviews, 6(5), 405-431.
  • Dai, Y., Chen, Y., & Xie, L. (2017). A study on a novel two-body floating wave energy converter. Ocean Engineering, 130, 407-416.
  • Do, H. T., Dang, T. D., & Ahn, K. K. (2018). A multi-point-absorber wave-energy converter for the stabilization of output power. Ocean engineering, 161, 337-349.
  • Eriksson, M., Isberg, J., & Leijon, M. (2005). Hydrodynamic modeling of a direct drive wave energy converter. International Journal of Engineering Science, 43(17-18), 1377-1387.
  • Ghasemi, A., Anbarsooz, M., Malvandi, A., Ghasemi, A., & Hedayati, F. (2017). A nonlinear computational modeling of wave energy converters: A tethered point absorber and a bottom-hinged flap device. Renewable energy, 103, 774-785.
  • Joe, H., Kim, M., Wi, S. M., Kwon, H. S., & Yu, S. C. (2014, September). Development of mooring-less robotic buoy system using wave powered renewable energy. In 2014 Oceans-St. John's (pp. 1-6). IEEE.
  • Karakose, P. (2019) Development Of Experımental Offshore Type Of Wave Energy Converter, Fırat University, Master thesis,Elazig.
  • Koca, A., & Yamaç, H. İ. (2017, November). Oscillating Water Column Analysis in Numerical Wave Tank with Variable Base Geometries. In International Advanced Researches & Engineering Congress 2017 Proceeding Book (p. 201). Dr. R. HALICIOGLU.
  • Lee, S., Ko, K., & Hong, J. W. (2020). Comparative study on the breaking waves by a piston-type wavemaker in experiments and SPH simulations. Coastal Engineering Journal, 62(2), 267-284.
  • Lejerskog, E., Boström, C., Hai, L., Waters, R., & Leijon, M. (2015). Experimental results on power absorption from a wave energy converter at the Lysekil wave energy research site. Renewable energy, 77, 9-14.
  • Liu, Z., Han, Z., Shi, H., & Yang, W. (2018). Experimental study on multi-level overtopping wave energy convertor under regular wave conditions. International Journal of Naval Architecture and Ocean Engineering, 10(5), 651-659.
  • Ozkop, E., & Altas, I. H. (2017). Control, power and electrical components in wave energy conversion systems: A review of the technologies. Renewable and Sustainable Energy Reviews, 67, 106-115.
  • Perez-Collazo, C., Greaves, D., & Iglesias, G. (2018, June). Proof of concept of a novel hybrid wind-wave energy converter. In International Conference on Offshore Mechanics and Arctic Engineering (Vol. 51319, p. V010T09A019). American Society of Mechanical Engineers.
  • Rhinefrank, K., Schacher, A., Prudell, J., Cruz, J., Stillinger, C., Naviaux, D., ... & Cox, D. (2013). Numerical analysis and scaled high resolution tank testing of a novel wave energy converter. Journal of offshore mechanics and Arctic engineering, 135(4).
  • S. Mert, (2012) A Desıgn And Experımental Study On Wave Power Conversıon System, Istanbul Technical University, Master thesis,İstanbul.
  • Sergiienko, N. Y., Cazzolato, B. S., Ding, B., Hardy, P., & Arjomandi, M. (2017). Performance comparison of the floating and fully submerged quasi-point absorber wave energy converters. Renewable energy, 108, 425-437.
  • Singh, P. M., Chen, Z., & Choi, Y. D. (2015). Component structural analysis on 15kW class wave energy converter. Journal of Advanced Marine Engineering and Technology, 39(8), 821-827.
  • So, R., Michelen, C., Bosma, B., Lenee-Bluhm, P., & Brekken, T. K. (2017). Statistical analysis of a 1: 7 scale field test wave energy converter using WEC-sim. IEEE Transactions on Sustainable Energy, 8(3), 1118-1126.
  • Tom, N. M., Lawson, M. J., Yu, Y. H., & Wright, A. D. (2016). Development of a nearshore oscillating surge wave energy converter with variable geometry. Renewable Energy, 96, 410-424.
  • Wahyudie, A., & Susilo, T. B. (2018, February). Design of a laboratory scale linear hydraulic wave energy converter. In 2018 5th International Conference on Renewable Energy: Generation and Applications (ICREGA) (pp. 220-222). IEEE.
  • Wan, L., Greco, M., Lugni, C., Gao, Z., & Moan, T. (2017). A combined wind and wave energy-converter concept in survival mode: Numerical and experimental study in regular waves with a focus on water entry and exit. Applied Ocean Research, 63, 200-216.
  • Yamaç, H. İ., & Koca, A. (2021). Numerical analysis of wave energy converting systems in case of using piezoelectric materials for energy harvesting. Journal of Marine Engineering & Technology, 20(2), 138-149.
  • Yamaç, H. İ., & Koca, A. (2017, September). Numerical wave tank analysis for energy harvesting with oscillating water column. In International Conference Mechatronics (pp. 726-734). Springer, Cham.
  • Youssef, J., Matar, J., Rahme, P., & Bou-Mosleh, C. (2016). A nearshore heaving-buoy sea wave energy converter for power production. Procedia Engineering, 145, 136-143.
There are 28 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Perihan Karaköse 0000-0002-8894-6997

Ahmet Koca 0000-0002-0137-6988

Publication Date December 31, 2022
Submission Date June 17, 2022
Acceptance Date August 5, 2022
Published in Issue Year 2022 Volume: 12 Issue: 2

Cite

APA Karaköse, P., & Koca, A. (2022). A Novel Rotor Type Wave Energy Converter Design for Maximum Energy Captured in Low Wave Heights. Batman Üniversitesi Yaşam Bilimleri Dergisi, 12(2), 136-153. https://doi.org/10.55024/buyasambid.1131891