Research Article
BibTex RIS Cite

Pem Yakıt Hücrelerinde Kullanılan Yakıtların Sıcaklık Değişimlerinin Performans Analizi

Year 2022, Volume: 12 Issue: 2, 154 - 164, 31.12.2022
https://doi.org/10.55024/buyasambid.1192362

Abstract

Bu çalışmada Polimer Elektrolit Membran (PEM) yakıt pilinde kullanılan yakıtların sıcaklık değerleri belirlenmiş ve bu yakıtlar için optimum sıcaklık aralıkları elde edilmiştir. Anot ve katot kısımlarında saf hidrojen ve oksijen kullanılmıştır. Bu çalışmada nem miktarı %40, hidrojen miktarı 0.3 ml/dk ve oksijen miktarı 0.5 ml/dk olarak alınmıştır. Sistemdeki hat sıcaklık değerleri de 5°C fark ile 40-80°C arasında test edilmiştir. 40°C'de yapılan deneylerde volt değeri 0.442V ve akım değeri 1.81A alındığında sistemde elde edilen güç değeri 0.804W olarak bulunmuştur. Deneyde 75°C'de akım değeri 1.8A ve volt değeri 0.535V iken sistemdeki güç değeri 1.025W olarak bulunmuştur. En düşük W değeri 40°C'de 0.804W, en yüksek W değeri 75°C'de 1.025W olarak hesaplanmıştır. Bu hesaplamalar tablolar ve grafikler halinde sunulmuştur.

References

  • [1] Strahl S.Costa-Castell´o R., 2017, Temperature control of open-cathode PEM fuel cells, IFAC Conference Paper Archives, Barcelona, Spain, 11088-11093.
  • [2] Lee, J., Gundu, M., Lee, N., Lim, K., WooLee, S., SoonJang, S., YoungKim, J., 2020, Innovative cathode flow-field design for passive air- cooled polymer electrolyte membrane (PEM) fuel cell stacks, International Journal of Hydrogen Energy, 45(20), 11704-11713. https://doi.org/10.1016/j.ijhydene.2019.07.128.
  • [3] Chugh, S., Meenakshi, S., Sonkar, K., Sharma, A., GSKapur, SSVRamakumar, 2019, Performance evaluation of PEM fuel cell stack on hydrogen produced in the oil refinery, International Journal of Hydrogen Energy, 45(8), 5491-5500. https://doi.org/10.1016/j.ijhydene.2019.07.128.
  • [4] Søndergaard, S., Cleemann, LN, Jensen, JO, Bjerrum, NJ, 2019, Influence of oxygen on the cathode in HT-PEM fuel cells, International Journal of Hydrogen Energy, 44(36) 20379 -20 388. DOI:10.1016/j.ijhydene.2019.06.025 [5] Özgür, T., Yakaryılmaz, A., 2018, A review: Exemplary analysis of PEM and PEM fuel cell based CHP systems, International Journal of Hydrogen Energy, 43(38), 17993-18000. https://doi.org/10.1016/j.ijhydene.2018.01.106
  • [6] Ramesh P. Duttagupta SP., 2013. Effect of Channel Dimensions on Micro PEM Fuel Cell Performance Using 3D Modeling, Internatıonal Journal Of Renewable Energy Research P.Ramesh Et Al., 3:2.
  • [7] Kaewsai D., Yeamdee S., Supajaroon S., Hunsom M., 2018., ORR activity and stability of PtCr/C catalysts in a low temperature/pressure PEM fuel cell: Effect of heat treatment temperature, International Journal of Hydrogen Energy 43(10), 5133-5144. DOI:10.1016/j.ijhydene.2018.01.101
  • [8] İçingür, Y., Kireç L., 2011, Design and trials of the gas flow plates in a polymer electrolyte membrane fuel cell, Gazi University Journal of Polytechnic, 14(1), 31-34.
  • [9] Bilen, G., Toklu, E., Avci, A.C., & Gur, M. 2014 Design of a 20 m3/h capacity hydrogen generator by sharp electrolysis method and investigation of the effect of porous electrode materials on parameters, The Journal of Engineering Research, 3, 184-195.
  • [10] Yılmaz, A., Şevik, S., 2017, Experimental Analysis of Electricity Generation with Sodium Borohydride (NaBH4) Assisted Hydrogen/Air PEM Fuel Cell, Batman University Journal of Life Sciences, 7(2/2), 216-227.
  • [11] Çevik İ, Coşman S ve Kahraman, H., 2014, The effect of compression pressure on PEM fuel cell performance, 2nd Internatıonal Symposıum On Innovatıve Technologıes In Engıneerıng And Scıence Sakarya University, 1008-1016.
  • [12] Sezgin, B., Caglayan, D., Devrim, Y., Steenberg, T., Eroglu, 2016, Modeling and sensitivity analysis of high temperature PEM fuel cells by using Comsol Multiphysics, International Journal of Hydrogen Energy, 41(23), 10001-10009.
  • [13] Akbar, S., Anwar, A., Noon MZ., JM. Elliott, Squires, AM., 2019 Platinum as an electrocatalyst: effect of morphological aspects of Pt/Pt-based materials, Materials Science and Technology, 35:1, 1-11.
  • [14] Cooper, N., Smith, T., Santamaria A., Park, J., 2016, Experimental optimization of parallel and interdigitated PEMFC flow-field channel geometry, International Journal of Hydrogen Energy, 41(2), 1213-1223. DOI:10.1016/j.ijhydene.2015.11.153

Performance Analysis of Temperature Changes of Fuels Used in Pem Fuel Cell

Year 2022, Volume: 12 Issue: 2, 154 - 164, 31.12.2022
https://doi.org/10.55024/buyasambid.1192362

Abstract

In this study, the temperature values of the fuels used in Polymer Electrolyte Membrane (PEM) fuel cell were determined and the optimum temperature ranges were obtained for these fuels. Pure hydrogen and oxygen were used in the anode and cathode portions. In this study, moisture was taken as 40%, hydrogen amount as 0.3 ml/min and oxygen amount as 0.5 ml / min. Line temperature values in the system were also tested between 40-80°C with a 5°C difference. In the experiments carried out at 40°C, when the volt value was taken as 0.442V and the current value was taken as 1.81A, the power value obtained in the system was found to be 0.804W. In the experiment, when the current value is 1.8A and the volt value is 0.535V at 75°C, the power value in the system is found to be 1.025W. The lowest W value was calculated as 0.804W at 40°C and the highest W value was calculated as 1.025W at 75°C. These calculations are presented in tables and graphs.

References

  • [1] Strahl S.Costa-Castell´o R., 2017, Temperature control of open-cathode PEM fuel cells, IFAC Conference Paper Archives, Barcelona, Spain, 11088-11093.
  • [2] Lee, J., Gundu, M., Lee, N., Lim, K., WooLee, S., SoonJang, S., YoungKim, J., 2020, Innovative cathode flow-field design for passive air- cooled polymer electrolyte membrane (PEM) fuel cell stacks, International Journal of Hydrogen Energy, 45(20), 11704-11713. https://doi.org/10.1016/j.ijhydene.2019.07.128.
  • [3] Chugh, S., Meenakshi, S., Sonkar, K., Sharma, A., GSKapur, SSVRamakumar, 2019, Performance evaluation of PEM fuel cell stack on hydrogen produced in the oil refinery, International Journal of Hydrogen Energy, 45(8), 5491-5500. https://doi.org/10.1016/j.ijhydene.2019.07.128.
  • [4] Søndergaard, S., Cleemann, LN, Jensen, JO, Bjerrum, NJ, 2019, Influence of oxygen on the cathode in HT-PEM fuel cells, International Journal of Hydrogen Energy, 44(36) 20379 -20 388. DOI:10.1016/j.ijhydene.2019.06.025 [5] Özgür, T., Yakaryılmaz, A., 2018, A review: Exemplary analysis of PEM and PEM fuel cell based CHP systems, International Journal of Hydrogen Energy, 43(38), 17993-18000. https://doi.org/10.1016/j.ijhydene.2018.01.106
  • [6] Ramesh P. Duttagupta SP., 2013. Effect of Channel Dimensions on Micro PEM Fuel Cell Performance Using 3D Modeling, Internatıonal Journal Of Renewable Energy Research P.Ramesh Et Al., 3:2.
  • [7] Kaewsai D., Yeamdee S., Supajaroon S., Hunsom M., 2018., ORR activity and stability of PtCr/C catalysts in a low temperature/pressure PEM fuel cell: Effect of heat treatment temperature, International Journal of Hydrogen Energy 43(10), 5133-5144. DOI:10.1016/j.ijhydene.2018.01.101
  • [8] İçingür, Y., Kireç L., 2011, Design and trials of the gas flow plates in a polymer electrolyte membrane fuel cell, Gazi University Journal of Polytechnic, 14(1), 31-34.
  • [9] Bilen, G., Toklu, E., Avci, A.C., & Gur, M. 2014 Design of a 20 m3/h capacity hydrogen generator by sharp electrolysis method and investigation of the effect of porous electrode materials on parameters, The Journal of Engineering Research, 3, 184-195.
  • [10] Yılmaz, A., Şevik, S., 2017, Experimental Analysis of Electricity Generation with Sodium Borohydride (NaBH4) Assisted Hydrogen/Air PEM Fuel Cell, Batman University Journal of Life Sciences, 7(2/2), 216-227.
  • [11] Çevik İ, Coşman S ve Kahraman, H., 2014, The effect of compression pressure on PEM fuel cell performance, 2nd Internatıonal Symposıum On Innovatıve Technologıes In Engıneerıng And Scıence Sakarya University, 1008-1016.
  • [12] Sezgin, B., Caglayan, D., Devrim, Y., Steenberg, T., Eroglu, 2016, Modeling and sensitivity analysis of high temperature PEM fuel cells by using Comsol Multiphysics, International Journal of Hydrogen Energy, 41(23), 10001-10009.
  • [13] Akbar, S., Anwar, A., Noon MZ., JM. Elliott, Squires, AM., 2019 Platinum as an electrocatalyst: effect of morphological aspects of Pt/Pt-based materials, Materials Science and Technology, 35:1, 1-11.
  • [14] Cooper, N., Smith, T., Santamaria A., Park, J., 2016, Experimental optimization of parallel and interdigitated PEMFC flow-field channel geometry, International Journal of Hydrogen Energy, 41(2), 1213-1223. DOI:10.1016/j.ijhydene.2015.11.153
There are 13 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Merve Demir 0000-0003-3051-7310

Adem Yılmaz 0000-0001-7266-0866

Publication Date December 31, 2022
Submission Date October 20, 2022
Acceptance Date November 8, 2022
Published in Issue Year 2022 Volume: 12 Issue: 2

Cite

APA Demir, M., & Yılmaz, A. (2022). Performance Analysis of Temperature Changes of Fuels Used in Pem Fuel Cell. Batman Üniversitesi Yaşam Bilimleri Dergisi, 12(2), 154-164. https://doi.org/10.55024/buyasambid.1192362