Research Article
BibTex RIS Cite

On Some Properties of Banach Space-Valued Fibonacci Sequence Spaces

Year 2024, , 80 - 87, 30.06.2024
https://doi.org/10.33434/cams.1442975

Abstract

In this work, we give some results about the basic properties of the vector-valued Fibonacci sequence spaces. In general, sequence spaces with Banach space-valued cannot have a Schauder Basis unless the terms of the sequences are complex or real terms. Instead, we defined the concept of relative basis in \cite{yy2} by generalizing the definition of a basis in Banach spaces. Using this definition, we have characterized certain important properties of vector-term Fibonacci sequence spaces, such as separability, Dunford-Pettis Property, approximation property, Radon-Riesz Property and Hahn-Banach extension property.

References

  • [1] Y. Yilmaz, Relative bases in Banach spaces, Nonlinear Anal., 71 (2009), 2012–2021.
  • [2] E. E. Kara, M. İlkhan, Some properties of generalized Fibonacci sequence spaces, Linear Multilinear Algebra, 64(11) (2016), 2208–2223.
  • [3] T. Koshy, Fibonacci and Lucus Numbers with Applications, Wiley, New York, 2001.
  • [4] E. E. Kara, Some topological and geometrical properties of new Banach sequence spaces, J. Inequal. Appl., 38 (2013), 1–15.
  • [5] S. Ercan, Ç. A. Bektaş, Some topological and geometric properties of a new BK-space derived by using regular matrix of Fibonacci numbers, Linear Multilinear Algebra, 65(5) (2017), 909–921.
  • [6] M. Candan, Some characteristics of matrix operators on generalized Fibonacci weighted difference sequence space, Symmetry, 14(7) (2022), 1283.
  • [7] R. E. Megginson, An Introduction to Banach Space Theory, Springer-Verlag, New York, 1998.
  • [8] A. Grothendieck, Sur les applications lineaires faiblement compactness d’espaces du type C(K), Canad. J. Math., 5 (1953), 129-173.
  • [9] D. Hilbert, Grundzii.ge einer allgemeinen Theorie der linearen lntegralgleichungen, IV, Nachr. Kgl. Gesells. Wiss. Gottingen Math.Phys. Kl., (1906), 157-227.
  • [10] R. S. Phillips, On linear transformations, Trans. Amer. Math. Soc., 48 (1940), 516-541.
  • [11] J. Radon, Theorie und Anwendungen der absalut additiven Mengenfunktionen, S.-B. Akad. Wiss. Wien, 122 (1913), 1295-1438.
  • [12] F. Riesz, Sur la convergence en moyenne, I, Acta Sci. Math., 4 (1928-1929), 58-64.
  • [13] F. Riesz, Sur la convergence en moyenne, II, Acta Sci. Math., 4 (1928-1929), 182-185.
  • [14] M. I. Kadets, On strong and weak convergence, Dokl. Akad. Nauk SSSR, 122 (1958), 13-16. (Russian)
  • [15] V. Klee, Mappings into normed linear spaces, Fund. Math., 49 (1960/61), 25-34.
  • [16] V. Klee, A proof of the topological equivalence of all separable infinite-dimensional Banach spaces, Functional Anal. Appl., 1 (1967), 53-62.
Year 2024, , 80 - 87, 30.06.2024
https://doi.org/10.33434/cams.1442975

Abstract

References

  • [1] Y. Yilmaz, Relative bases in Banach spaces, Nonlinear Anal., 71 (2009), 2012–2021.
  • [2] E. E. Kara, M. İlkhan, Some properties of generalized Fibonacci sequence spaces, Linear Multilinear Algebra, 64(11) (2016), 2208–2223.
  • [3] T. Koshy, Fibonacci and Lucus Numbers with Applications, Wiley, New York, 2001.
  • [4] E. E. Kara, Some topological and geometrical properties of new Banach sequence spaces, J. Inequal. Appl., 38 (2013), 1–15.
  • [5] S. Ercan, Ç. A. Bektaş, Some topological and geometric properties of a new BK-space derived by using regular matrix of Fibonacci numbers, Linear Multilinear Algebra, 65(5) (2017), 909–921.
  • [6] M. Candan, Some characteristics of matrix operators on generalized Fibonacci weighted difference sequence space, Symmetry, 14(7) (2022), 1283.
  • [7] R. E. Megginson, An Introduction to Banach Space Theory, Springer-Verlag, New York, 1998.
  • [8] A. Grothendieck, Sur les applications lineaires faiblement compactness d’espaces du type C(K), Canad. J. Math., 5 (1953), 129-173.
  • [9] D. Hilbert, Grundzii.ge einer allgemeinen Theorie der linearen lntegralgleichungen, IV, Nachr. Kgl. Gesells. Wiss. Gottingen Math.Phys. Kl., (1906), 157-227.
  • [10] R. S. Phillips, On linear transformations, Trans. Amer. Math. Soc., 48 (1940), 516-541.
  • [11] J. Radon, Theorie und Anwendungen der absalut additiven Mengenfunktionen, S.-B. Akad. Wiss. Wien, 122 (1913), 1295-1438.
  • [12] F. Riesz, Sur la convergence en moyenne, I, Acta Sci. Math., 4 (1928-1929), 58-64.
  • [13] F. Riesz, Sur la convergence en moyenne, II, Acta Sci. Math., 4 (1928-1929), 182-185.
  • [14] M. I. Kadets, On strong and weak convergence, Dokl. Akad. Nauk SSSR, 122 (1958), 13-16. (Russian)
  • [15] V. Klee, Mappings into normed linear spaces, Fund. Math., 49 (1960/61), 25-34.
  • [16] V. Klee, A proof of the topological equivalence of all separable infinite-dimensional Banach spaces, Functional Anal. Appl., 1 (1967), 53-62.
There are 16 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Articles
Authors

Yılmaz Yılmaz 0000-0003-1484-782X

Seçkin Yalçın 0000-0002-1673-3319

Early Pub Date June 5, 2024
Publication Date June 30, 2024
Submission Date February 26, 2024
Acceptance Date May 6, 2024
Published in Issue Year 2024

Cite

APA Yılmaz, Y., & Yalçın, S. (2024). On Some Properties of Banach Space-Valued Fibonacci Sequence Spaces. Communications in Advanced Mathematical Sciences, 7(2), 80-87. https://doi.org/10.33434/cams.1442975
AMA Yılmaz Y, Yalçın S. On Some Properties of Banach Space-Valued Fibonacci Sequence Spaces. Communications in Advanced Mathematical Sciences. June 2024;7(2):80-87. doi:10.33434/cams.1442975
Chicago Yılmaz, Yılmaz, and Seçkin Yalçın. “On Some Properties of Banach Space-Valued Fibonacci Sequence Spaces”. Communications in Advanced Mathematical Sciences 7, no. 2 (June 2024): 80-87. https://doi.org/10.33434/cams.1442975.
EndNote Yılmaz Y, Yalçın S (June 1, 2024) On Some Properties of Banach Space-Valued Fibonacci Sequence Spaces. Communications in Advanced Mathematical Sciences 7 2 80–87.
IEEE Y. Yılmaz and S. Yalçın, “On Some Properties of Banach Space-Valued Fibonacci Sequence Spaces”, Communications in Advanced Mathematical Sciences, vol. 7, no. 2, pp. 80–87, 2024, doi: 10.33434/cams.1442975.
ISNAD Yılmaz, Yılmaz - Yalçın, Seçkin. “On Some Properties of Banach Space-Valued Fibonacci Sequence Spaces”. Communications in Advanced Mathematical Sciences 7/2 (June 2024), 80-87. https://doi.org/10.33434/cams.1442975.
JAMA Yılmaz Y, Yalçın S. On Some Properties of Banach Space-Valued Fibonacci Sequence Spaces. Communications in Advanced Mathematical Sciences. 2024;7:80–87.
MLA Yılmaz, Yılmaz and Seçkin Yalçın. “On Some Properties of Banach Space-Valued Fibonacci Sequence Spaces”. Communications in Advanced Mathematical Sciences, vol. 7, no. 2, 2024, pp. 80-87, doi:10.33434/cams.1442975.
Vancouver Yılmaz Y, Yalçın S. On Some Properties of Banach Space-Valued Fibonacci Sequence Spaces. Communications in Advanced Mathematical Sciences. 2024;7(2):80-7.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..