Research Article
BibTex RIS Cite
Year 2024, , 199 - 211, 31.12.2024
https://doi.org/10.33434/cams.1561789

Abstract

References

  • W. Sierpinski, On the equation $3^x +4^y =5^z$, Wiad. Mat., 1 (1956), 194–195.
  • L. Jesmanowicz, Several remarks on Pythagorean numbers, Wiad. Mat., 1(2) (1955), 196–202.
  • N. Terai, The Diophantine equation $a^x+b^y=c^z$, Proc. Japan Acad. Ser. A Math. Sci., 70 (1994), 22-26.
  • N. Terai, T. Hibino, \emph{On the exponential Diophantine equation}, Int. J. Algebra, 6(23) (2012), 1135–1146.
  • T. Miyazaki, N. Terai, On the exponential Diophantine equation, Bull. Aust. Math. Soc., 90(1) (2014), 9–19.
  • N. Terai, T. Hibino, On the exponential Diophantine equation $(12m^2+ 1)^x+(13m^2- 1)^y=(5m)^z$, Int. J. Algebra, 9(6) (2015), 261–272.
  • R. Fu, H. Yang, On the exponential Diophantine equation, Period. Math. Hungar., 75(2) (2017), 143–149.
  • X. Pan, A note on the exponential Diophantine equation, Colloq. Math., 149 (2017), 265–273.
  • M. Alan, On the exponential Diophantine equation $(18m^2+1)^x+(7m^2−1)^y= (5m)^z$, Turkish J. Math., 42(4) (2018), 1990-1999.
  • E. Kizildere, T. Miyazaki, G. Soydan, On the Diophantine equation $((c +1)m^2+ 1)^x+(cm^2-1)^y= (am)^z$, Turkish J. Math., 42,(5) (2018), 2690–2698.
  • N.J. Deng, D.Y. Wu, P.Z. Yuan, The exponential Diophantine equation $(3am^2-1)^x+(a(a-3)m^2+1)^y=(am)^z$, Turkish J. Math., 43(5) (2019), 2561 – 2567.
  • N. Terai, On the exponential Diophantine equation, Ann. Math. Inform., 52 (2020), 243–253.
  • E. Kızıldere, G. Soydan, On the Diophantine equation $(5pn^2−1)^x+(p(p−5)n^2+1)^y=(pn)^z$, Honam Math. J., 42 (2020), 139–150.
  • N. Terai, Y. Shinsho, On the exponential Diophantine equation $(3m^2 +1)^x +(qm^2-1)^y = (rm)^z$, SUT J. Math., 56 (2020) 147-158.
  • N. Terai, Y. Shinsho, On the exponential Diophantine equation $(4m^2 +1)^x +(45m^2-1)^y = (7m)^z$, Int. J. Algebra, 15(4) (2021), 233-241.
  • M. Alan, R.G. Biratlı, On the exponential Diophantine equation $(6m^2 +1)^x+(3m^2 −1)^y = (3m)^z$, Fundam. J. Math. Appl., 5(3) (2022), 174-180.
  • S. Fei, J. Luo, A Note on the Exponential Diophantine Equation $(rlm^2-1)^x+(r (r-l) m^2+ 1)^y=(rm)^z$, Bull. Braz. Math. Soc. (N.S.), 53 (2022), 1499-1517.
  • E. Hasanalizade, A note on the exponential Diophantine equation $(44m + 1)^x+ (5m - 1)^ y= (7m)^z$, Integers, 23 (2023), 1.
  • T. Çokoksen, M. Alan, On the Diophantine equation $(9d^2 + 1)^x + (16d^2 − 1)^y = (5d)^z$ Regarding Terai's Conjecture, J. New Theory, 47 (2024), 72-84.
  • A. Çağman, Repdigits as sums of three Half-companion Pell numbers}, Miskolc Math. Notes, 24(2) (2023), 687-697.
  • A. Çağman, K. Polat, On a Diophantine equation related to the difference of two Pell numbers, Contrib. Math., 3 (2021), 37-42.
  • A. Çağman, Explicit Solutions of Powers of Three as Sums of Three Pell Numbers Based on Baker’s Type Inequalities, TJI, 5(1) (2021), 93-103.
  • M. Le, Some exponential Diophantine equations. I. The equation $d_1x^2- d_2y^2=\lambda k^z$, J. Number Theory, 55 (1995), 209-221.
  • Y. Bugeaud, T. Shorey, On the number of solutions of the generalized Ramanujan-Nagell equation, J. Reine Angew. Math., 539 (2001), 55-74.
  • Y. Bilu, G. Hanrot, P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math., 539 (2001), 75-122.
  • P. M. Voutier, Primitive divisors of Lucas and Lehmer sequences, Math. Comp., 64 (1995), 869-888.
  • K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math., 3 (1892), 265–284.
  • L. K. Hua, Introduction to Number Theory, Science Publishing Co, (1957).
  • J. H. E. Cohn, Square Fibonacci numbers, J. Lond. Math. Soc. (2), (1964), 109-113.

On the Diophantine Equation $(8r^2+1)^x+(r^2-1)^y=(3r)^z$ Regarding Terai's Conjecture

Year 2024, , 199 - 211, 31.12.2024
https://doi.org/10.33434/cams.1561789

Abstract

This study establishes that the sole positive integer solution to the exponential Diophantine equation $(8r^2+1)^x+(r^2-1)^y=(3r)^z$ is $(x,y,z)=(1,1,2)$ for all $r>1$. The proof employs elementary techniques from number theory, a classification method, and Zsigmondy's Primitive Divisor Theorem.

References

  • W. Sierpinski, On the equation $3^x +4^y =5^z$, Wiad. Mat., 1 (1956), 194–195.
  • L. Jesmanowicz, Several remarks on Pythagorean numbers, Wiad. Mat., 1(2) (1955), 196–202.
  • N. Terai, The Diophantine equation $a^x+b^y=c^z$, Proc. Japan Acad. Ser. A Math. Sci., 70 (1994), 22-26.
  • N. Terai, T. Hibino, \emph{On the exponential Diophantine equation}, Int. J. Algebra, 6(23) (2012), 1135–1146.
  • T. Miyazaki, N. Terai, On the exponential Diophantine equation, Bull. Aust. Math. Soc., 90(1) (2014), 9–19.
  • N. Terai, T. Hibino, On the exponential Diophantine equation $(12m^2+ 1)^x+(13m^2- 1)^y=(5m)^z$, Int. J. Algebra, 9(6) (2015), 261–272.
  • R. Fu, H. Yang, On the exponential Diophantine equation, Period. Math. Hungar., 75(2) (2017), 143–149.
  • X. Pan, A note on the exponential Diophantine equation, Colloq. Math., 149 (2017), 265–273.
  • M. Alan, On the exponential Diophantine equation $(18m^2+1)^x+(7m^2−1)^y= (5m)^z$, Turkish J. Math., 42(4) (2018), 1990-1999.
  • E. Kizildere, T. Miyazaki, G. Soydan, On the Diophantine equation $((c +1)m^2+ 1)^x+(cm^2-1)^y= (am)^z$, Turkish J. Math., 42,(5) (2018), 2690–2698.
  • N.J. Deng, D.Y. Wu, P.Z. Yuan, The exponential Diophantine equation $(3am^2-1)^x+(a(a-3)m^2+1)^y=(am)^z$, Turkish J. Math., 43(5) (2019), 2561 – 2567.
  • N. Terai, On the exponential Diophantine equation, Ann. Math. Inform., 52 (2020), 243–253.
  • E. Kızıldere, G. Soydan, On the Diophantine equation $(5pn^2−1)^x+(p(p−5)n^2+1)^y=(pn)^z$, Honam Math. J., 42 (2020), 139–150.
  • N. Terai, Y. Shinsho, On the exponential Diophantine equation $(3m^2 +1)^x +(qm^2-1)^y = (rm)^z$, SUT J. Math., 56 (2020) 147-158.
  • N. Terai, Y. Shinsho, On the exponential Diophantine equation $(4m^2 +1)^x +(45m^2-1)^y = (7m)^z$, Int. J. Algebra, 15(4) (2021), 233-241.
  • M. Alan, R.G. Biratlı, On the exponential Diophantine equation $(6m^2 +1)^x+(3m^2 −1)^y = (3m)^z$, Fundam. J. Math. Appl., 5(3) (2022), 174-180.
  • S. Fei, J. Luo, A Note on the Exponential Diophantine Equation $(rlm^2-1)^x+(r (r-l) m^2+ 1)^y=(rm)^z$, Bull. Braz. Math. Soc. (N.S.), 53 (2022), 1499-1517.
  • E. Hasanalizade, A note on the exponential Diophantine equation $(44m + 1)^x+ (5m - 1)^ y= (7m)^z$, Integers, 23 (2023), 1.
  • T. Çokoksen, M. Alan, On the Diophantine equation $(9d^2 + 1)^x + (16d^2 − 1)^y = (5d)^z$ Regarding Terai's Conjecture, J. New Theory, 47 (2024), 72-84.
  • A. Çağman, Repdigits as sums of three Half-companion Pell numbers}, Miskolc Math. Notes, 24(2) (2023), 687-697.
  • A. Çağman, K. Polat, On a Diophantine equation related to the difference of two Pell numbers, Contrib. Math., 3 (2021), 37-42.
  • A. Çağman, Explicit Solutions of Powers of Three as Sums of Three Pell Numbers Based on Baker’s Type Inequalities, TJI, 5(1) (2021), 93-103.
  • M. Le, Some exponential Diophantine equations. I. The equation $d_1x^2- d_2y^2=\lambda k^z$, J. Number Theory, 55 (1995), 209-221.
  • Y. Bugeaud, T. Shorey, On the number of solutions of the generalized Ramanujan-Nagell equation, J. Reine Angew. Math., 539 (2001), 55-74.
  • Y. Bilu, G. Hanrot, P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math., 539 (2001), 75-122.
  • P. M. Voutier, Primitive divisors of Lucas and Lehmer sequences, Math. Comp., 64 (1995), 869-888.
  • K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math., 3 (1892), 265–284.
  • L. K. Hua, Introduction to Number Theory, Science Publishing Co, (1957).
  • J. H. E. Cohn, Square Fibonacci numbers, J. Lond. Math. Soc. (2), (1964), 109-113.
There are 29 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Articles
Authors

Tuba Çokoksen 0009-0004-3164-1211

Murat Alan 0000-0003-2031-2725

Early Pub Date December 12, 2024
Publication Date December 31, 2024
Submission Date October 5, 2024
Acceptance Date December 9, 2024
Published in Issue Year 2024

Cite

APA Çokoksen, T., & Alan, M. (2024). On the Diophantine Equation $(8r^2+1)^x+(r^2-1)^y=(3r)^z$ Regarding Terai’s Conjecture. Communications in Advanced Mathematical Sciences, 7(4), 199-211. https://doi.org/10.33434/cams.1561789
AMA Çokoksen T, Alan M. On the Diophantine Equation $(8r^2+1)^x+(r^2-1)^y=(3r)^z$ Regarding Terai’s Conjecture. Communications in Advanced Mathematical Sciences. December 2024;7(4):199-211. doi:10.33434/cams.1561789
Chicago Çokoksen, Tuba, and Murat Alan. “On the Diophantine Equation $(8r^2+1)^x+(r^2-1)^y=(3r)^z$ Regarding Terai’s Conjecture”. Communications in Advanced Mathematical Sciences 7, no. 4 (December 2024): 199-211. https://doi.org/10.33434/cams.1561789.
EndNote Çokoksen T, Alan M (December 1, 2024) On the Diophantine Equation $(8r^2+1)^x+(r^2-1)^y=(3r)^z$ Regarding Terai’s Conjecture. Communications in Advanced Mathematical Sciences 7 4 199–211.
IEEE T. Çokoksen and M. Alan, “On the Diophantine Equation $(8r^2+1)^x+(r^2-1)^y=(3r)^z$ Regarding Terai’s Conjecture”, Communications in Advanced Mathematical Sciences, vol. 7, no. 4, pp. 199–211, 2024, doi: 10.33434/cams.1561789.
ISNAD Çokoksen, Tuba - Alan, Murat. “On the Diophantine Equation $(8r^2+1)^x+(r^2-1)^y=(3r)^z$ Regarding Terai’s Conjecture”. Communications in Advanced Mathematical Sciences 7/4 (December 2024), 199-211. https://doi.org/10.33434/cams.1561789.
JAMA Çokoksen T, Alan M. On the Diophantine Equation $(8r^2+1)^x+(r^2-1)^y=(3r)^z$ Regarding Terai’s Conjecture. Communications in Advanced Mathematical Sciences. 2024;7:199–211.
MLA Çokoksen, Tuba and Murat Alan. “On the Diophantine Equation $(8r^2+1)^x+(r^2-1)^y=(3r)^z$ Regarding Terai’s Conjecture”. Communications in Advanced Mathematical Sciences, vol. 7, no. 4, 2024, pp. 199-11, doi:10.33434/cams.1561789.
Vancouver Çokoksen T, Alan M. On the Diophantine Equation $(8r^2+1)^x+(r^2-1)^y=(3r)^z$ Regarding Terai’s Conjecture. Communications in Advanced Mathematical Sciences. 2024;7(4):199-211.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..