Research Article
BibTex RIS Cite

Year 2025, Volume: 8 Issue: 4, 225 - 246, 08.12.2025
https://doi.org/10.33434/cams.1754577

Abstract

References

  • [1] N. J. A. Sloane et al., The on-line encyclopedia of integer sequences, The OEIS Foundation Inc., Highland Park, USA, 2025.
  • [2] E. A. Costa, E. G. C. Mesquita, P. M. Catarino, On the connections between Fibonacci and Mulatu numbers, Intermaths, 6(1) (2025), 17-36. https://doi.org/10.22481/intermaths.v6i1.16742
  • [3] D. N. Derso, A. A. Admasu, More on the fascinating characterizations of Mulatu’s numbers, F1000Research, 13 (2024), Article ID 1306. https://doi.org/10.12688/f1000research.157738.1
  • [4] R. P. M. Vieira, U. L. Parente, F. R. V. Alves, P. Catarino, Uma nota da abordagem combinatória dos números de Mulatu, Revista de Matemática da UFOP, 1(1) (2024), 1-7. https://doi.org/10.5281/zenodo.11044118
  • [5] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, Hoboken, New Jersey, Vol. 1, 2017.
  • [6] S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, Dover Publications, NY, 2008.
  • [7] M. K. Azarian, The generating function for the Fibonacci sequence, Missouri J. Math. Sci., 2(2) (1990), 78-79. https://doi.org/10.35834/1990/0202078
  • [8] A. F. Horadam, A generalized Fibonacci sequence, Am. Math. Mon., 68(5) (1961), 455-459. https://doi.org/10.1080/00029890.1961.11989696
  • [9] D. Kalman, R. Mena, The Fibonacci numbers—exposed, Math. Mag., 76(3) (2003), 167-181. https://doi.org/10.1080/0025570X.2003.11953176
  • [10] A. F. Horadam, Basic properties of a certain generalized sequence of numbers, Fibonacci Q., 3(3) (1965), 161-176. https://doi.org/10.1080/00150517.1965.12431416
  • [11] C. J. Harman, Complex Fibonacci numbers, Fibonacci Q., 19(1) (1981), 82-86. https://doi.org/10.1080/00150517.1981.12430133
  • [12] P. Catarino, P. Vasco, A. Borges, H. Campos, A. P. Aires, Sums, Products and identities involving $k-$Fibonacci and $k-$Lucas sequences, JP J. Algebr. Number Theory Appl., 32(1) (2014), 63-77. http://dx.doi.org/10.17654/JPANTAFeb2014 063 077
  • [13] S. Falcon, A. Plaza, On the Fibonacci $k-$numbers, Chaos Solitons Fractals, 32(5) (2007), 1615-1624. https://doi.org/10.1016/j.chaos.2006.09.022
  • [14] N. Yılmaz, Y. Yazlık, N. Taşkara, On the $k-$generalized Fibonacci numbers, Selçuk J. Appl. Math., 13(1) (2012), 83-88.
  • [15] S. Falcon, On the generating matrices of the $k-$Fibonacci numbers, Proyecciones, 32(4) (2013), 347-357. http://dx.doi.org/10.4067/S0716-09172013000400004
  • [16] S. Falcon, On the extended $(k, t)-$Fibonacci numbers, J. Adv. Math. Comput. Sci., 39(7) (2024), 81-89. https://doi.org/10.9734/jamcs/2024/v39i71914
  • [17] B. Singh, O. Sikhwal, Y. K. Gupta, Generalized Fibonacci-Lucas sequence, Turk. J. Anal. Number Theory, 2(6) (2014), 193-197. http://doi.org/10.12691/tjant-2-6-1
  • [18] P. Catarino, On some identities for $k-$Fibonacci sequence, Int. J. Contemp. Math. Sci., 9(1) (2014), 37-42. http: //dx.doi.org/10.12988/ijcms.2014.311120
  • [19] P. Catarino, H. Campos, From Fibonacci sequence to more recent generalisations, In International Conference on Mathematics and its Applications in Science and Engineering, Salamanca, Spain, 1-2 July 2021; Springer International Publishing: Cham, Switzerland, 384 (2022), 259-269. https://doi.org/10.1007/978-3-030-96401-6_24
  • [20] A. A. Wani, V. H. Badshah, G. P. S. Rathore, P. Catarino, Generalized Fibonacci and $k-$Pell matrix sequences, Punjab Univ. J. Math., 51(1) (2019), 17-28.
  • [21] M. Edson, O. Yayenie, A new generalization of Fibonacci sequence and extended Binet’s formula, Integers, 9 (2009), 639-654. https://doi.org/10.1515/INTEG.2009.051
  • [22] O. Yayenie, A note on generalized Fibonacci sequences, Appl. Math. Comput., 217(12) (2011), 5603-5611. https://doi.org/10.1016/j.amc.2010.12.038
  • [23] J. B. Bacani, J. F. T. Rabago, On generalized Fibonacci numbers, Appl. Math. Sci., 9(73) (2015), 3611-3622. http://dx.doi.org/10.12988/ams.2015.5299
  • [24] I. M. Adhikari, On the Fibonacci and the generalized Fibonacci sequence, Journal of Nepal Mathematical Society, 8(1) (2025), 30-38. https://doi.org/10.3126/jnms.v8i1.80311
  • [25] S. Koparal, N. Ömür, S. Boz, K. S. Mohamed, W. A. Khan, A. Adam, Generalized Fibonacci polynomials and their properties, Symmetry, 17(11) (2025), Article ID 1898. https://doi.org/10.3390/sym17111898
  • [26] F. Oduol, I. O. Okoth, On generalized Fibonacci numbers, Commun. Adv. Math. Sci., 3(4) (2020), 186-202. https://doi.org/10.33434/cams.771023
  • [27] Y. Soykan, On generalized Fibonacci polynomials: Horadam polynomials, Earthline J. Math. Sci., 11(1) (2023), 23-114. https://doi.org/10.34198/ejms.11123.23114
  • [28] N. N. Vorobiov, Números de Fibonacci, Editorial MIR, Moscow, 1973.
  • [29] L. Mulatu, J. Lambright, Our brief Journey with some properties and patterns of the Mulatu numbers, GPH-International Journal of Mathematics, 4(1) (2021), 23–29.
  • [30] F. R. V. Alves, Sequência generalizada de Fibonacci e relações com o número aureo, Boletim Cearense de Educação e História da Matemática, 2(6) (2015), 30-36. https://doi.org/10.30938/bocehm.v2i6.15
  • [31] S. Kristyan, Lucas sequences and Fibonacci numbers related equations, Part i.: Differential equations and sums, AIP Conf. Proc. 2425(1) (2022), Article ID 420003. https://doi.org/10.1063/5.0081313

Exploring Generalized $2^k$-Fibonacci Sequence: A New Family of the Fibonacci Sequence

Year 2025, Volume: 8 Issue: 4, 225 - 246, 08.12.2025
https://doi.org/10.33434/cams.1754577

Abstract

The focus of this paper is to study the $2^k$–Fibonacci sequence, which is defined for all integers $2^k$, and its connections with both the Fibonacci and the Fibonacci-Lucas sequences. Among the main results, we highlight the expression of the $2^k$-Fibonacci numbers as a linear combination of Fibonacci numbers and Fibonacci-Lucas numbers. Additionally, the paper presents several identities, such as Binet's formula, the Tagiuri-Vajda identity, d'Ocagne's identity, Catalan's identity, and the generating function. Furthermore, we explore some properties of these generalized sequences and establish formulas for sums of terms involving the $2^k$-Fibonacci numbers.

References

  • [1] N. J. A. Sloane et al., The on-line encyclopedia of integer sequences, The OEIS Foundation Inc., Highland Park, USA, 2025.
  • [2] E. A. Costa, E. G. C. Mesquita, P. M. Catarino, On the connections between Fibonacci and Mulatu numbers, Intermaths, 6(1) (2025), 17-36. https://doi.org/10.22481/intermaths.v6i1.16742
  • [3] D. N. Derso, A. A. Admasu, More on the fascinating characterizations of Mulatu’s numbers, F1000Research, 13 (2024), Article ID 1306. https://doi.org/10.12688/f1000research.157738.1
  • [4] R. P. M. Vieira, U. L. Parente, F. R. V. Alves, P. Catarino, Uma nota da abordagem combinatória dos números de Mulatu, Revista de Matemática da UFOP, 1(1) (2024), 1-7. https://doi.org/10.5281/zenodo.11044118
  • [5] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, Hoboken, New Jersey, Vol. 1, 2017.
  • [6] S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, Dover Publications, NY, 2008.
  • [7] M. K. Azarian, The generating function for the Fibonacci sequence, Missouri J. Math. Sci., 2(2) (1990), 78-79. https://doi.org/10.35834/1990/0202078
  • [8] A. F. Horadam, A generalized Fibonacci sequence, Am. Math. Mon., 68(5) (1961), 455-459. https://doi.org/10.1080/00029890.1961.11989696
  • [9] D. Kalman, R. Mena, The Fibonacci numbers—exposed, Math. Mag., 76(3) (2003), 167-181. https://doi.org/10.1080/0025570X.2003.11953176
  • [10] A. F. Horadam, Basic properties of a certain generalized sequence of numbers, Fibonacci Q., 3(3) (1965), 161-176. https://doi.org/10.1080/00150517.1965.12431416
  • [11] C. J. Harman, Complex Fibonacci numbers, Fibonacci Q., 19(1) (1981), 82-86. https://doi.org/10.1080/00150517.1981.12430133
  • [12] P. Catarino, P. Vasco, A. Borges, H. Campos, A. P. Aires, Sums, Products and identities involving $k-$Fibonacci and $k-$Lucas sequences, JP J. Algebr. Number Theory Appl., 32(1) (2014), 63-77. http://dx.doi.org/10.17654/JPANTAFeb2014 063 077
  • [13] S. Falcon, A. Plaza, On the Fibonacci $k-$numbers, Chaos Solitons Fractals, 32(5) (2007), 1615-1624. https://doi.org/10.1016/j.chaos.2006.09.022
  • [14] N. Yılmaz, Y. Yazlık, N. Taşkara, On the $k-$generalized Fibonacci numbers, Selçuk J. Appl. Math., 13(1) (2012), 83-88.
  • [15] S. Falcon, On the generating matrices of the $k-$Fibonacci numbers, Proyecciones, 32(4) (2013), 347-357. http://dx.doi.org/10.4067/S0716-09172013000400004
  • [16] S. Falcon, On the extended $(k, t)-$Fibonacci numbers, J. Adv. Math. Comput. Sci., 39(7) (2024), 81-89. https://doi.org/10.9734/jamcs/2024/v39i71914
  • [17] B. Singh, O. Sikhwal, Y. K. Gupta, Generalized Fibonacci-Lucas sequence, Turk. J. Anal. Number Theory, 2(6) (2014), 193-197. http://doi.org/10.12691/tjant-2-6-1
  • [18] P. Catarino, On some identities for $k-$Fibonacci sequence, Int. J. Contemp. Math. Sci., 9(1) (2014), 37-42. http: //dx.doi.org/10.12988/ijcms.2014.311120
  • [19] P. Catarino, H. Campos, From Fibonacci sequence to more recent generalisations, In International Conference on Mathematics and its Applications in Science and Engineering, Salamanca, Spain, 1-2 July 2021; Springer International Publishing: Cham, Switzerland, 384 (2022), 259-269. https://doi.org/10.1007/978-3-030-96401-6_24
  • [20] A. A. Wani, V. H. Badshah, G. P. S. Rathore, P. Catarino, Generalized Fibonacci and $k-$Pell matrix sequences, Punjab Univ. J. Math., 51(1) (2019), 17-28.
  • [21] M. Edson, O. Yayenie, A new generalization of Fibonacci sequence and extended Binet’s formula, Integers, 9 (2009), 639-654. https://doi.org/10.1515/INTEG.2009.051
  • [22] O. Yayenie, A note on generalized Fibonacci sequences, Appl. Math. Comput., 217(12) (2011), 5603-5611. https://doi.org/10.1016/j.amc.2010.12.038
  • [23] J. B. Bacani, J. F. T. Rabago, On generalized Fibonacci numbers, Appl. Math. Sci., 9(73) (2015), 3611-3622. http://dx.doi.org/10.12988/ams.2015.5299
  • [24] I. M. Adhikari, On the Fibonacci and the generalized Fibonacci sequence, Journal of Nepal Mathematical Society, 8(1) (2025), 30-38. https://doi.org/10.3126/jnms.v8i1.80311
  • [25] S. Koparal, N. Ömür, S. Boz, K. S. Mohamed, W. A. Khan, A. Adam, Generalized Fibonacci polynomials and their properties, Symmetry, 17(11) (2025), Article ID 1898. https://doi.org/10.3390/sym17111898
  • [26] F. Oduol, I. O. Okoth, On generalized Fibonacci numbers, Commun. Adv. Math. Sci., 3(4) (2020), 186-202. https://doi.org/10.33434/cams.771023
  • [27] Y. Soykan, On generalized Fibonacci polynomials: Horadam polynomials, Earthline J. Math. Sci., 11(1) (2023), 23-114. https://doi.org/10.34198/ejms.11123.23114
  • [28] N. N. Vorobiov, Números de Fibonacci, Editorial MIR, Moscow, 1973.
  • [29] L. Mulatu, J. Lambright, Our brief Journey with some properties and patterns of the Mulatu numbers, GPH-International Journal of Mathematics, 4(1) (2021), 23–29.
  • [30] F. R. V. Alves, Sequência generalizada de Fibonacci e relações com o número aureo, Boletim Cearense de Educação e História da Matemática, 2(6) (2015), 30-36. https://doi.org/10.30938/bocehm.v2i6.15
  • [31] S. Kristyan, Lucas sequences and Fibonacci numbers related equations, Part i.: Differential equations and sums, AIP Conf. Proc. 2425(1) (2022), Article ID 420003. https://doi.org/10.1063/5.0081313
There are 31 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Research Article
Authors

Elis Gardel Costa Mesquista 0000-0003-2385-4108

Paula Maria Machado Cruz Catarino 0000-0001-6917-5093

Eudes Antonio Costa 0000-0001-6684-9961

Submission Date September 2, 2025
Acceptance Date December 1, 2025
Early Pub Date December 5, 2025
Publication Date December 8, 2025
Published in Issue Year 2025 Volume: 8 Issue: 4

Cite

APA Costa Mesquista, E. G., Catarino, P. M. M. C., & Costa, E. A. (2025). Exploring Generalized $2^k$-Fibonacci Sequence: A New Family of the Fibonacci Sequence. Communications in Advanced Mathematical Sciences, 8(4), 225-246. https://doi.org/10.33434/cams.1754577
AMA Costa Mesquista EG, Catarino PMMC, Costa EA. Exploring Generalized $2^k$-Fibonacci Sequence: A New Family of the Fibonacci Sequence. Communications in Advanced Mathematical Sciences. December 2025;8(4):225-246. doi:10.33434/cams.1754577
Chicago Costa Mesquista, Elis Gardel, Paula Maria Machado Cruz Catarino, and Eudes Antonio Costa. “Exploring Generalized $2^k$-Fibonacci Sequence: A New Family of the Fibonacci Sequence”. Communications in Advanced Mathematical Sciences 8, no. 4 (December 2025): 225-46. https://doi.org/10.33434/cams.1754577.
EndNote Costa Mesquista EG, Catarino PMMC, Costa EA (December 1, 2025) Exploring Generalized $2^k$-Fibonacci Sequence: A New Family of the Fibonacci Sequence. Communications in Advanced Mathematical Sciences 8 4 225–246.
IEEE E. G. Costa Mesquista, P. M. M. C. Catarino, and E. A. Costa, “Exploring Generalized $2^k$-Fibonacci Sequence: A New Family of the Fibonacci Sequence”, Communications in Advanced Mathematical Sciences, vol. 8, no. 4, pp. 225–246, 2025, doi: 10.33434/cams.1754577.
ISNAD Costa Mesquista, Elis Gardel et al. “Exploring Generalized $2^k$-Fibonacci Sequence: A New Family of the Fibonacci Sequence”. Communications in Advanced Mathematical Sciences 8/4 (December2025), 225-246. https://doi.org/10.33434/cams.1754577.
JAMA Costa Mesquista EG, Catarino PMMC, Costa EA. Exploring Generalized $2^k$-Fibonacci Sequence: A New Family of the Fibonacci Sequence. Communications in Advanced Mathematical Sciences. 2025;8:225–246.
MLA Costa Mesquista, Elis Gardel et al. “Exploring Generalized $2^k$-Fibonacci Sequence: A New Family of the Fibonacci Sequence”. Communications in Advanced Mathematical Sciences, vol. 8, no. 4, 2025, pp. 225-46, doi:10.33434/cams.1754577.
Vancouver Costa Mesquista EG, Catarino PMMC, Costa EA. Exploring Generalized $2^k$-Fibonacci Sequence: A New Family of the Fibonacci Sequence. Communications in Advanced Mathematical Sciences. 2025;8(4):225-46.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..