Research Article
PDF BibTex RIS Cite

A note on the "saturation" of poisson-exponential cumulative function in Hausdorff sense

Year 2018, Volume: 1 Issue: 1, 39 - 44, 30.09.2018
https://doi.org/10.33434/cams.444785

Abstract

In this paper we study the important ''saturation'' characteristic for the Poisson--exponential cumulative distribution function in the Hausdorff sense. The results have independent significance in the study of issues related to lifetime analysis, insurance mathematics, biochemical kinetics, population dynamics and debugging theory. Numerical examples, illustrating our results are presented using programming environment Mathematica.

References

  • [1] V. Cancho, F. Louzada and G. Barriga, The Poisson–exponential lifetime distribution, Comp. Stat. Data Anal., vol. 55, pp. 677–686, 2011.
  • [2] G. Rodrigues, F. Louzada and P. Ramos, Poisson–exponential distribution: different methods of estimation, J. of Appl. Stat., vol. 45 (1), pp. 128–144, 2018.
  • [3] F. Louzada, P. Ramos and P. Ferreira, Exponential–Poisson distribution: estimation and applications to rainfall and aircraft data with zero occurrence, Communication in Statistics–Simulation and Computation, 2018.
  • [4] F. Hausdorff, Set Theory (2 ed.) (Chelsea Publ., New York, (1962 [1957]) (Republished by AMS-Chelsea 2005), ISBN: 978–0–821–83835–8.
  • [5] N. Pavlov, A. Iliev, A. Rahnev and N. Kyurkchiev, Some software reliability models: Approximation and modeling aspects, LAP LAMBERT Academic Publishing, 2018, ISBN: 978-613-9-82805-0.
  • [6] N. Pavlov, A. Iliev, A. Rahnev and N. Kyurkchiev, Nontrivial Models in Debugging Theory (Part 2), LAP LAMBERT Academic Publishing, 2018, ISBN: 978-613-9-87794-2.
  • [7] M. Ramos, A. Percontini, G. Cordeiro and R. Silva, The Burr XII Negative Binomial Distribution with applications to Lifetime Data, Int. J. of Stat. and Prob., vol. 4 (1), pp. 109–124, 2015.
  • [8] N. Kyurkchiev and S. Markov, Sigmoid functions: Some Approximation and Modelling Aspects. (LAP LAMBERT Academic Publishing, Saarbrucken, 2015); ISBN 978-3-659-76045-7.
  • [9] N. Kyurkchiev and S. Markov, On the Hausdorff distance between the Heaviside step function and Verhulst logistic function. J. Math. Chem., vol. 54 (1), pp. 109–119, DOI:10.1007/S10910-015-0552-0.
  • [10] A. Iliev, N. Kyurkchiev and S. Markov, On the Approximation of the step function by some sigmoid functions, Mathematics and Computers in Simulation, 2015, DOI:10.1016/j.matcom.2015.11.005.
  • [11] N. Kyurkchiev, A new transmuted cumulative distribution function based on the Verhulst logistic function with application in population dynamics. Biomath Communications, vol. 4 (1), 2017.
  • [12] N. Kyurkchiev, A new class of activation function based on the correcting amendments Int. J. for Sci., Res. and Developments, vol. 6 (2), pp. 565–568, 2018.
  • [13] N. Kyurkchiev, The new transmuted C.D.F. based on Gompertz function, Biomath Communications, vol. 5 (1), 2018.
  • [14] V. Kyurkchiev and N. Kyurkchiev, A Family of Recurrence Generated Functions Based on ”Half-Hyperbolic Tangent Activation Function”. Biomedical Statistics and Informatics, vol. 2 (3), pp. 87–94, 2017.
  • [15] A. Iliev, N. Kyurkchiev and S. Markov, A Note on the New Activation Function of Gompertz Type, Biomath Communications, vol. 4 (2), 2017.
  • [16] N. Kyurkchiev, A. Iliev, Extension of Gompertz-type Equation in Modern Science: 240 Anniversary of the birth of B. Gompertz, LAP LAMBERT Academic Publishing, 2018, ISBN: 978-613-9-90569-0.
  • [17] V. Kyurkchiev, A. Malinova, O. Rahneva, P. Kyurkchiev, On the Burr XII-Weibull Software Reliability Model, Int. J. of Pure and Appl. Math., vol. 119 (4), pp. 639—650, 2018.
  • [18] V. Kyurkchiev, A. Malinova, O. Rahneva, P. Kyurkchiev, Some Notes on the Extended Burr XII Software Reliability Model, Int. J. of Pure and Appl. Math., vol. 120 (1), pp. 127–136, 2018.
  • [19] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Application of a New Class Cumulative Lifetime Distribution to Software Reliability Analysis, Communications in Applied Analysis, vol. 22 (4), pp. 555-–565, 2018.
  • [20] V. Kyurkchiev, H. Kiskinov, O. Rahneva, G. Spasov, A Note on the Exponentiated Exponential-Poisson Software Reliability Model, Neural, Parallel, and Scientific Computations, vol. 26, 2018. (to appear)
  • [21] N. Kyurkchiev, A. Iliev and S. Markov, Some Techniques for Recurrence Generating of Activation Functions: Some Modeling and Approximation Aspects, LAP LAMBERT Academic Publishing, 2017, ISBN: 978-3-330-33143-3.

Year 2018, Volume: 1 Issue: 1, 39 - 44, 30.09.2018
https://doi.org/10.33434/cams.444785

Abstract

References

  • [1] V. Cancho, F. Louzada and G. Barriga, The Poisson–exponential lifetime distribution, Comp. Stat. Data Anal., vol. 55, pp. 677–686, 2011.
  • [2] G. Rodrigues, F. Louzada and P. Ramos, Poisson–exponential distribution: different methods of estimation, J. of Appl. Stat., vol. 45 (1), pp. 128–144, 2018.
  • [3] F. Louzada, P. Ramos and P. Ferreira, Exponential–Poisson distribution: estimation and applications to rainfall and aircraft data with zero occurrence, Communication in Statistics–Simulation and Computation, 2018.
  • [4] F. Hausdorff, Set Theory (2 ed.) (Chelsea Publ., New York, (1962 [1957]) (Republished by AMS-Chelsea 2005), ISBN: 978–0–821–83835–8.
  • [5] N. Pavlov, A. Iliev, A. Rahnev and N. Kyurkchiev, Some software reliability models: Approximation and modeling aspects, LAP LAMBERT Academic Publishing, 2018, ISBN: 978-613-9-82805-0.
  • [6] N. Pavlov, A. Iliev, A. Rahnev and N. Kyurkchiev, Nontrivial Models in Debugging Theory (Part 2), LAP LAMBERT Academic Publishing, 2018, ISBN: 978-613-9-87794-2.
  • [7] M. Ramos, A. Percontini, G. Cordeiro and R. Silva, The Burr XII Negative Binomial Distribution with applications to Lifetime Data, Int. J. of Stat. and Prob., vol. 4 (1), pp. 109–124, 2015.
  • [8] N. Kyurkchiev and S. Markov, Sigmoid functions: Some Approximation and Modelling Aspects. (LAP LAMBERT Academic Publishing, Saarbrucken, 2015); ISBN 978-3-659-76045-7.
  • [9] N. Kyurkchiev and S. Markov, On the Hausdorff distance between the Heaviside step function and Verhulst logistic function. J. Math. Chem., vol. 54 (1), pp. 109–119, DOI:10.1007/S10910-015-0552-0.
  • [10] A. Iliev, N. Kyurkchiev and S. Markov, On the Approximation of the step function by some sigmoid functions, Mathematics and Computers in Simulation, 2015, DOI:10.1016/j.matcom.2015.11.005.
  • [11] N. Kyurkchiev, A new transmuted cumulative distribution function based on the Verhulst logistic function with application in population dynamics. Biomath Communications, vol. 4 (1), 2017.
  • [12] N. Kyurkchiev, A new class of activation function based on the correcting amendments Int. J. for Sci., Res. and Developments, vol. 6 (2), pp. 565–568, 2018.
  • [13] N. Kyurkchiev, The new transmuted C.D.F. based on Gompertz function, Biomath Communications, vol. 5 (1), 2018.
  • [14] V. Kyurkchiev and N. Kyurkchiev, A Family of Recurrence Generated Functions Based on ”Half-Hyperbolic Tangent Activation Function”. Biomedical Statistics and Informatics, vol. 2 (3), pp. 87–94, 2017.
  • [15] A. Iliev, N. Kyurkchiev and S. Markov, A Note on the New Activation Function of Gompertz Type, Biomath Communications, vol. 4 (2), 2017.
  • [16] N. Kyurkchiev, A. Iliev, Extension of Gompertz-type Equation in Modern Science: 240 Anniversary of the birth of B. Gompertz, LAP LAMBERT Academic Publishing, 2018, ISBN: 978-613-9-90569-0.
  • [17] V. Kyurkchiev, A. Malinova, O. Rahneva, P. Kyurkchiev, On the Burr XII-Weibull Software Reliability Model, Int. J. of Pure and Appl. Math., vol. 119 (4), pp. 639—650, 2018.
  • [18] V. Kyurkchiev, A. Malinova, O. Rahneva, P. Kyurkchiev, Some Notes on the Extended Burr XII Software Reliability Model, Int. J. of Pure and Appl. Math., vol. 120 (1), pp. 127–136, 2018.
  • [19] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Application of a New Class Cumulative Lifetime Distribution to Software Reliability Analysis, Communications in Applied Analysis, vol. 22 (4), pp. 555-–565, 2018.
  • [20] V. Kyurkchiev, H. Kiskinov, O. Rahneva, G. Spasov, A Note on the Exponentiated Exponential-Poisson Software Reliability Model, Neural, Parallel, and Scientific Computations, vol. 26, 2018. (to appear)
  • [21] N. Kyurkchiev, A. Iliev and S. Markov, Some Techniques for Recurrence Generating of Activation Functions: Some Modeling and Approximation Aspects, LAP LAMBERT Academic Publishing, 2017, ISBN: 978-3-330-33143-3.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Anton ILİEV

0000-0001-9796-8453
Bulgaria


Nikolay Kyurkchiev

Bulgaria

Publication Date September 30, 2018
Submission Date July 17, 2018
Acceptance Date September 16, 2018
Published in Issue Year 2018 Volume: 1 Issue: 1

Cite

Bibtex @research article { cams444785, journal = {Communications in Advanced Mathematical Sciences}, issn = {2651-4001}, address = {}, publisher = {Emrah Evren KARA}, year = {2018}, volume = {1}, number = {1}, pages = {39 - 44}, doi = {10.33434/cams.444785}, title = {A note on the "saturation" of poisson-exponential cumulative function in Hausdorff sense}, key = {cite}, author = {Iliev, Anton and Kyurkchiev, Nikolay} }
APA Iliev, A. & Kyurkchiev, N. (2018). A note on the "saturation" of poisson-exponential cumulative function in Hausdorff sense . Communications in Advanced Mathematical Sciences , 1 (1) , 39-44 . DOI: 10.33434/cams.444785
MLA Iliev, A. , Kyurkchiev, N. "A note on the "saturation" of poisson-exponential cumulative function in Hausdorff sense" . Communications in Advanced Mathematical Sciences 1 (2018 ): 39-44 <https://dergipark.org.tr/en/pub/cams/issue/39351/444785>
Chicago Iliev, A. , Kyurkchiev, N. "A note on the "saturation" of poisson-exponential cumulative function in Hausdorff sense". Communications in Advanced Mathematical Sciences 1 (2018 ): 39-44
RIS TY - JOUR T1 - A note on the "saturation" of poisson-exponential cumulative function in Hausdorff sense AU - AntonIliev, NikolayKyurkchiev Y1 - 2018 PY - 2018 N1 - doi: 10.33434/cams.444785 DO - 10.33434/cams.444785 T2 - Communications in Advanced Mathematical Sciences JF - Journal JO - JOR SP - 39 EP - 44 VL - 1 IS - 1 SN - 2651-4001- M3 - doi: 10.33434/cams.444785 UR - https://doi.org/10.33434/cams.444785 Y2 - 2018 ER -
EndNote %0 Communications in Advanced Mathematical Sciences A note on the "saturation" of poisson-exponential cumulative function in Hausdorff sense %A Anton Iliev , Nikolay Kyurkchiev %T A note on the "saturation" of poisson-exponential cumulative function in Hausdorff sense %D 2018 %J Communications in Advanced Mathematical Sciences %P 2651-4001- %V 1 %N 1 %R doi: 10.33434/cams.444785 %U 10.33434/cams.444785
ISNAD Iliev, Anton , Kyurkchiev, Nikolay . "A note on the "saturation" of poisson-exponential cumulative function in Hausdorff sense". Communications in Advanced Mathematical Sciences 1 / 1 (September 2018): 39-44 . https://doi.org/10.33434/cams.444785
AMA Iliev A. , Kyurkchiev N. A note on the "saturation" of poisson-exponential cumulative function in Hausdorff sense. Communications in Advanced Mathematical Sciences. 2018; 1(1): 39-44.
Vancouver Iliev A. , Kyurkchiev N. A note on the "saturation" of poisson-exponential cumulative function in Hausdorff sense. Communications in Advanced Mathematical Sciences. 2018; 1(1): 39-44.
IEEE A. Iliev and N. Kyurkchiev , "A note on the "saturation" of poisson-exponential cumulative function in Hausdorff sense", Communications in Advanced Mathematical Sciences, vol. 1, no. 1, pp. 39-44, Sep. 2018, doi:10.33434/cams.444785
Creative Commons License
The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.