Research Article
BibTex RIS Cite

On Bicomplex Pell and Pell-Lucas Numbers

Year 2018, Volume: 1 Issue: 2, 142 - 155, 24.12.2018
https://doi.org/10.33434/cams.439752

Abstract

In this paper, bicomplex Pell and bicomplex Pell-Lucas numbers are defined. Also, negabicomplex Pell and negabicomplex Pell-Lucas numbers are given. Some algebraic properties of bicomplex Pell and bicomplex Pell-Lucas numbers which are connected between bicomplex numbers and Pell and Pell-Lucas numbers are investigated. Furthermore, d'Ocagne's identity, Binet's formula, Cassini's identity and Catalan's identity for these numbers are given.

References

  • [1] C. Segre, Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici, Math. Ann. 40 (1892), 413–467, doi:10.1007/bf01443559.
  • [2] G. B. Price, An Introduction to Multicomplex Spaces and Functions, Marcel Dekker, Inc. New York, 1991.
  • [3] D. Rochon, A Generalized mandelbrot set for bicomplex numbers, Fractals, 8 (2000), 355–368.
  • [4] S. Ö . Karakus, K. F. Aksoyak, Generalized bicomplex numbers and lie groups, Adv. Appl. Clifford Algebr., 25 (2015), 943–963.
  • [5] D. Rochon, M. Shapiro, On algebraic properties of bicomplex and hyperbolic numbers, Ann. Univ. Oradea Fasc. Mat., 11 (2004), 71–110.
  • [6] M. Bicknell, A primer of the Pell sequence and related sequences, Fibonacci Quart., 13 (1975), 345–349.
  • [7] A. F. Horadam, Pell identities, Fibonacci Quart., 9 (1971), 245–252.
  • [8] R. Melham, Sums Involving Fibonacci and Pell numbers, Port. Math., 56 (1999), 309–317.
  • [9] Z. Şiar, R. Keskin, Some new identities concerning generalized Fibonacci and Lucas numbers, Hacet. J. Math. Stat., 42(3) (2013), 211–222.
  • [10] P. Catarino, Bicomplex k-Pell quaternions, Comput. Methods Funct. Theory, (2018), doi: org/10.1007/s40315-018-0251-5.
Year 2018, Volume: 1 Issue: 2, 142 - 155, 24.12.2018
https://doi.org/10.33434/cams.439752

Abstract

References

  • [1] C. Segre, Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici, Math. Ann. 40 (1892), 413–467, doi:10.1007/bf01443559.
  • [2] G. B. Price, An Introduction to Multicomplex Spaces and Functions, Marcel Dekker, Inc. New York, 1991.
  • [3] D. Rochon, A Generalized mandelbrot set for bicomplex numbers, Fractals, 8 (2000), 355–368.
  • [4] S. Ö . Karakus, K. F. Aksoyak, Generalized bicomplex numbers and lie groups, Adv. Appl. Clifford Algebr., 25 (2015), 943–963.
  • [5] D. Rochon, M. Shapiro, On algebraic properties of bicomplex and hyperbolic numbers, Ann. Univ. Oradea Fasc. Mat., 11 (2004), 71–110.
  • [6] M. Bicknell, A primer of the Pell sequence and related sequences, Fibonacci Quart., 13 (1975), 345–349.
  • [7] A. F. Horadam, Pell identities, Fibonacci Quart., 9 (1971), 245–252.
  • [8] R. Melham, Sums Involving Fibonacci and Pell numbers, Port. Math., 56 (1999), 309–317.
  • [9] Z. Şiar, R. Keskin, Some new identities concerning generalized Fibonacci and Lucas numbers, Hacet. J. Math. Stat., 42(3) (2013), 211–222.
  • [10] P. Catarino, Bicomplex k-Pell quaternions, Comput. Methods Funct. Theory, (2018), doi: org/10.1007/s40315-018-0251-5.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Fügen Torunbalcı Aydın

Publication Date December 24, 2018
Submission Date July 2, 2018
Acceptance Date October 2, 2018
Published in Issue Year 2018 Volume: 1 Issue: 2

Cite

APA Torunbalcı Aydın, F. (2018). On Bicomplex Pell and Pell-Lucas Numbers. Communications in Advanced Mathematical Sciences, 1(2), 142-155. https://doi.org/10.33434/cams.439752
AMA Torunbalcı Aydın F. On Bicomplex Pell and Pell-Lucas Numbers. Communications in Advanced Mathematical Sciences. December 2018;1(2):142-155. doi:10.33434/cams.439752
Chicago Torunbalcı Aydın, Fügen. “On Bicomplex Pell and Pell-Lucas Numbers”. Communications in Advanced Mathematical Sciences 1, no. 2 (December 2018): 142-55. https://doi.org/10.33434/cams.439752.
EndNote Torunbalcı Aydın F (December 1, 2018) On Bicomplex Pell and Pell-Lucas Numbers. Communications in Advanced Mathematical Sciences 1 2 142–155.
IEEE F. Torunbalcı Aydın, “On Bicomplex Pell and Pell-Lucas Numbers”, Communications in Advanced Mathematical Sciences, vol. 1, no. 2, pp. 142–155, 2018, doi: 10.33434/cams.439752.
ISNAD Torunbalcı Aydın, Fügen. “On Bicomplex Pell and Pell-Lucas Numbers”. Communications in Advanced Mathematical Sciences 1/2 (December 2018), 142-155. https://doi.org/10.33434/cams.439752.
JAMA Torunbalcı Aydın F. On Bicomplex Pell and Pell-Lucas Numbers. Communications in Advanced Mathematical Sciences. 2018;1:142–155.
MLA Torunbalcı Aydın, Fügen. “On Bicomplex Pell and Pell-Lucas Numbers”. Communications in Advanced Mathematical Sciences, vol. 1, no. 2, 2018, pp. 142-55, doi:10.33434/cams.439752.
Vancouver Torunbalcı Aydın F. On Bicomplex Pell and Pell-Lucas Numbers. Communications in Advanced Mathematical Sciences. 2018;1(2):142-55.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..