Research Article
BibTex RIS Cite

L-Fuzzy Invariant Metric Space

Year 2018, Volume: 1 Issue: 2, 137 - 141, 24.12.2018
https://doi.org/10.33434/cams.444659

Abstract

In this paper, we define L-fuzzy invariant metric space, and generalize some well known results in metric and fuzzy metric space including Uniform continuity theorem and Ascoli-Arzela theorem.

References

  • [1] Z. Deng, Fuzzy pseudo-metric spaces, J. Math. Anal. Appl., 86 (1982), 74-95.
  • [2] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64 (1994), 395-399.
  • [3] A. George, P. Veeramani, Some theorems in fuzzy metric spaces, J. Fuzzy. Math., 3 (1995), 933-940.
  • [4] J. Goguen, d-fuzzy sets, J. Math. Anal. Appl., 18 (1967), 145-174.
  • [5] S. B. Hosseini, J. H. Park, R. Saadati, Intuitionistic fuzzy invariant metric spaces, Int. J. Pure Appl. Math. Sci., 2 (2005), 139-149.
  • [6] S. Kutukcu, A common fixed point theorem for a sequence of self maps in intuitionistic fuzzy metric spaces, Commun. Korean Math. Soc., 21 (2006), 679-687.
  • [7] S. Kutukcu, A. Tuna, A. T. Yakut, Generalized contraction mapping principle in intuitionistic Menger spaces and application to differential equations, Appl. Math. Mech., 28 (2007), 799-809.
  • [8] R. Saadati, J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos Solitons Fractals, 27 (2006), 331-344.
  • [9] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos Solitons Fractals, 22 (2004), 1039-1046.
  • [10] S. Sharma, Common fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems, 127 (2002), 345–352.
  • [11] G. Deschrijver, C. Cornelis, E. E. Kerre, On the representation of intuitionistic fuzzy t-norms and t-conorms, IEEE Trans. Fuzzy Syst., 12 (2004), 45-61.
  • [12] G. Deschrijver, E. E. Kerre, On the relationship between some extensions of fuzzy set theory, Fuzzy Sets and Systems, 133 (2003), 227-235.
Year 2018, Volume: 1 Issue: 2, 137 - 141, 24.12.2018
https://doi.org/10.33434/cams.444659

Abstract

References

  • [1] Z. Deng, Fuzzy pseudo-metric spaces, J. Math. Anal. Appl., 86 (1982), 74-95.
  • [2] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64 (1994), 395-399.
  • [3] A. George, P. Veeramani, Some theorems in fuzzy metric spaces, J. Fuzzy. Math., 3 (1995), 933-940.
  • [4] J. Goguen, d-fuzzy sets, J. Math. Anal. Appl., 18 (1967), 145-174.
  • [5] S. B. Hosseini, J. H. Park, R. Saadati, Intuitionistic fuzzy invariant metric spaces, Int. J. Pure Appl. Math. Sci., 2 (2005), 139-149.
  • [6] S. Kutukcu, A common fixed point theorem for a sequence of self maps in intuitionistic fuzzy metric spaces, Commun. Korean Math. Soc., 21 (2006), 679-687.
  • [7] S. Kutukcu, A. Tuna, A. T. Yakut, Generalized contraction mapping principle in intuitionistic Menger spaces and application to differential equations, Appl. Math. Mech., 28 (2007), 799-809.
  • [8] R. Saadati, J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos Solitons Fractals, 27 (2006), 331-344.
  • [9] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos Solitons Fractals, 22 (2004), 1039-1046.
  • [10] S. Sharma, Common fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems, 127 (2002), 345–352.
  • [11] G. Deschrijver, C. Cornelis, E. E. Kerre, On the representation of intuitionistic fuzzy t-norms and t-conorms, IEEE Trans. Fuzzy Syst., 12 (2004), 45-61.
  • [12] G. Deschrijver, E. E. Kerre, On the relationship between some extensions of fuzzy set theory, Fuzzy Sets and Systems, 133 (2003), 227-235.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Servet Kütükçü

Publication Date December 24, 2018
Submission Date July 17, 2018
Acceptance Date October 2, 2018
Published in Issue Year 2018 Volume: 1 Issue: 2

Cite

APA Kütükçü, S. (2018). L-Fuzzy Invariant Metric Space. Communications in Advanced Mathematical Sciences, 1(2), 137-141. https://doi.org/10.33434/cams.444659
AMA Kütükçü S. L-Fuzzy Invariant Metric Space. Communications in Advanced Mathematical Sciences. December 2018;1(2):137-141. doi:10.33434/cams.444659
Chicago Kütükçü, Servet. “L-Fuzzy Invariant Metric Space”. Communications in Advanced Mathematical Sciences 1, no. 2 (December 2018): 137-41. https://doi.org/10.33434/cams.444659.
EndNote Kütükçü S (December 1, 2018) L-Fuzzy Invariant Metric Space. Communications in Advanced Mathematical Sciences 1 2 137–141.
IEEE S. Kütükçü, “L-Fuzzy Invariant Metric Space”, Communications in Advanced Mathematical Sciences, vol. 1, no. 2, pp. 137–141, 2018, doi: 10.33434/cams.444659.
ISNAD Kütükçü, Servet. “L-Fuzzy Invariant Metric Space”. Communications in Advanced Mathematical Sciences 1/2 (December 2018), 137-141. https://doi.org/10.33434/cams.444659.
JAMA Kütükçü S. L-Fuzzy Invariant Metric Space. Communications in Advanced Mathematical Sciences. 2018;1:137–141.
MLA Kütükçü, Servet. “L-Fuzzy Invariant Metric Space”. Communications in Advanced Mathematical Sciences, vol. 1, no. 2, 2018, pp. 137-41, doi:10.33434/cams.444659.
Vancouver Kütükçü S. L-Fuzzy Invariant Metric Space. Communications in Advanced Mathematical Sciences. 2018;1(2):137-41.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..