Research Article
BibTex RIS Cite

A Unified Family of Generalized $q$-Hermite Apostol Type Polynomials and its Applications

Year 2019, Volume: 2 Issue: 1, 1 - 8, 22.03.2019
https://doi.org/10.33434/cams.475529

Abstract

The intended objective of this paper is to introduce a new class of generalized $q$-Hermite based Apostol type polynomials by combining the $q$-Hermite polynomials and a unified family of $q$-Apostol-type polynomials. The generating function, series definition and several explicit representations for these polynomials are established. The $q$-Hermite-Apostol Bernoulli, $q$-Hermite-Apostol Euler and $q$-Hermite-Apostol Genocchi polynomials are studied as special members of this family and corresponding relations for these polynomials are obtained.

References

  • [1] G.E. Andrews, R. Askey, R. Roy, Special Functions Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1999.
  • [2] G.E. Andrews, R. Askey, Classical orthogonal polynomials, C. Brenziniski et al. (editors), in ”Polynomes Orthogonaux et Applications”, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1171 1984, pp 36-63.
  • [3] N. I. Mahmudov, Difference equations of q-Appell polynomials, Appl. Math. Comput., 245 (2014), 539-543.
  • [4] Q. M. Luo, H. M. Srivastava, Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials, J. Math. Anal. Appl., 308 (2005), 290-302.
  • [5] Q. M. Luo, H. M. Srivastava, Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials, Comput. Math. Appl., 51(3-4) (2006), 631-642.
  • [6] Q. M. Luo, Apostol Euler polynomials of higher orders and gaussian hypergeometric functions, Taiwanese J. Math., 10 (2006), 917-925.
  • [7] Q. M. Luo, H. M. Srivastava, Some generalizations of the Apostol-Genochhi polynomials and the stirling numbers of the second kind, Appl. Math. Comput., 217 (2011), 5702-5728.
  • [8] T. Ernst, On certain generalized q-Appell polynomial expansions, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 68(2) (2015), 27-50.
  • [9] M. A. Ozarslan, Unified Apostol-Bernoulli, Euler and Genocchi polynomials, Comput. Math. Appl., 62(6) (2011), 2452- 2462.
  • [10] B. Kurt, Notes on unified q-Apostol type polynomials, Filomat, 30 (2016), 921-927.
Year 2019, Volume: 2 Issue: 1, 1 - 8, 22.03.2019
https://doi.org/10.33434/cams.475529

Abstract

References

  • [1] G.E. Andrews, R. Askey, R. Roy, Special Functions Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1999.
  • [2] G.E. Andrews, R. Askey, Classical orthogonal polynomials, C. Brenziniski et al. (editors), in ”Polynomes Orthogonaux et Applications”, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1171 1984, pp 36-63.
  • [3] N. I. Mahmudov, Difference equations of q-Appell polynomials, Appl. Math. Comput., 245 (2014), 539-543.
  • [4] Q. M. Luo, H. M. Srivastava, Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials, J. Math. Anal. Appl., 308 (2005), 290-302.
  • [5] Q. M. Luo, H. M. Srivastava, Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials, Comput. Math. Appl., 51(3-4) (2006), 631-642.
  • [6] Q. M. Luo, Apostol Euler polynomials of higher orders and gaussian hypergeometric functions, Taiwanese J. Math., 10 (2006), 917-925.
  • [7] Q. M. Luo, H. M. Srivastava, Some generalizations of the Apostol-Genochhi polynomials and the stirling numbers of the second kind, Appl. Math. Comput., 217 (2011), 5702-5728.
  • [8] T. Ernst, On certain generalized q-Appell polynomial expansions, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 68(2) (2015), 27-50.
  • [9] M. A. Ozarslan, Unified Apostol-Bernoulli, Euler and Genocchi polynomials, Comput. Math. Appl., 62(6) (2011), 2452- 2462.
  • [10] B. Kurt, Notes on unified q-Apostol type polynomials, Filomat, 30 (2016), 921-927.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Subuhi Khan 0000-0002-9084-8077

Tabinda Nahid This is me 0000-0001-8463-3611

Publication Date March 22, 2019
Submission Date October 28, 2018
Acceptance Date November 12, 2018
Published in Issue Year 2019 Volume: 2 Issue: 1

Cite

APA Khan, S., & Nahid, T. (2019). A Unified Family of Generalized $q$-Hermite Apostol Type Polynomials and its Applications. Communications in Advanced Mathematical Sciences, 2(1), 1-8. https://doi.org/10.33434/cams.475529
AMA Khan S, Nahid T. A Unified Family of Generalized $q$-Hermite Apostol Type Polynomials and its Applications. Communications in Advanced Mathematical Sciences. March 2019;2(1):1-8. doi:10.33434/cams.475529
Chicago Khan, Subuhi, and Tabinda Nahid. “A Unified Family of Generalized $q$-Hermite Apostol Type Polynomials and Its Applications”. Communications in Advanced Mathematical Sciences 2, no. 1 (March 2019): 1-8. https://doi.org/10.33434/cams.475529.
EndNote Khan S, Nahid T (March 1, 2019) A Unified Family of Generalized $q$-Hermite Apostol Type Polynomials and its Applications. Communications in Advanced Mathematical Sciences 2 1 1–8.
IEEE S. Khan and T. Nahid, “A Unified Family of Generalized $q$-Hermite Apostol Type Polynomials and its Applications”, Communications in Advanced Mathematical Sciences, vol. 2, no. 1, pp. 1–8, 2019, doi: 10.33434/cams.475529.
ISNAD Khan, Subuhi - Nahid, Tabinda. “A Unified Family of Generalized $q$-Hermite Apostol Type Polynomials and Its Applications”. Communications in Advanced Mathematical Sciences 2/1 (March 2019), 1-8. https://doi.org/10.33434/cams.475529.
JAMA Khan S, Nahid T. A Unified Family of Generalized $q$-Hermite Apostol Type Polynomials and its Applications. Communications in Advanced Mathematical Sciences. 2019;2:1–8.
MLA Khan, Subuhi and Tabinda Nahid. “A Unified Family of Generalized $q$-Hermite Apostol Type Polynomials and Its Applications”. Communications in Advanced Mathematical Sciences, vol. 2, no. 1, 2019, pp. 1-8, doi:10.33434/cams.475529.
Vancouver Khan S, Nahid T. A Unified Family of Generalized $q$-Hermite Apostol Type Polynomials and its Applications. Communications in Advanced Mathematical Sciences. 2019;2(1):1-8.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..