Research Article
BibTex RIS Cite
Year 2019, Volume: 2 Issue: 2, 75 - 104, 27.06.2019
https://doi.org/10.33434/cams.478999

Abstract

References

  • [1] D. J. Korteweg, G. de Vries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Phil. Mag., 39 (1895), 422-443.
  • [2] J. Boussinesq, Essai sur la theorie des eaux courantes, M´emoires pr´esent´es par divers savants, Acad. des Sci. Inst. Nat. France, XXIII (1877), 1-680.
  • [3] J. Scott-Russell, Report on Waves. Report to the 14th meeting British Association for Advancement of Science, (1844), 311-390.
  • [4] I. M. Gel’fand, B. M. Levitan, On the determination of a differential equation from its spectral function, Amer. Math. Soc. Transl., 2 (1) (1955), 253-304.
  • [5] N. Levinson, The inverse Sturm-Liouville problem, Mat. Tidsskr. B., (1949) 25-30.
  • [6] M. D. Kruskal, R. M. Miura, C. S. Gardner, N. J. Zabusky, Korteweg-de Vries equation and generalizations V. Uniqueness and nonexistence of polynomial consevation laws, J. Math. Phys., 11 (1970), 952-960.
  • [7] P. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math., 21 (1968), 467-490.
  • [8] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett., 19 (1967), 1095-1097.
  • [9] C. S. Gardner, Korteweg-de Vries equation and generalizations IV, The Korteweg-de Vries equation as a Hamiltonian system, J. Math. Phys., 12 (1971), 1548-1551.
  • [10] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, Korteweg-de Vries equation and generalizations VI, Methods for exact solutions, Comm. Pure Appl. Math., 27 (1974), 97-133.
  • [11] R. M. Miura, C. S. Gardner, M. D. Kruskal, Korteweg-de Vries equation and generalizations II. Existence of conservation laws and constants of motion, J. Math. Phys., 9 (1968), 1204-1209.
  • [12] P. Lax, Periodic solutions of the KdV equation, Comm. Pure Appl. Math., 28 (1975), 141-188.
  • [13] P. Lax, R. Phillips, Scattering theory for automorphic functions. Annals Math. Studies, Princeton, 1976.
  • [14] A. Lesfari, Etude des ´equations stationnaire de Schr¨odinger, int´egrale de Gelfand-Levitan et de Korteweg-de-Vries. Solitons et m´ethode de la diffusion inverse, Aequat. Math., 85 (2013), 243-272.
  • [15] M. Wadati, M. Toda, The exact N-soliton solution of the Korteweg-de Vries equation, J. Phys. Soc. Japan, 32 (1972), 1403-1411.
  • [16] B. B. Kadomtsev, V I. and Petviashvili, On the Stability of Solitary Waves in Weakly Dispersing Media, Sov. Phys. Dokl., 15 (6) (1970), 539-541.
  • [17] M. Sato, Soliton equations and the universal Grassmann manifold, Math. Lect. Note Ser. 18. Sophia University, Tokyo, 1984.
  • [18] P. van Moerbeke, Integrable foundations of string theory in Lectures on Integrable Systems, (Sophia-Antipolis, 1991), World Sci., River Edge, N.J., (1994), 163-267.
  • [19] J.-L. Gervais, Infinite family of polynomial functions of the Virasoro generators with vanishing Poisson bracket, Phys. Lett. B, 160 (4-5) (1985), 277-278.
  • [20] M. Adler, P. van Moerbeke, P. Vanhaecke, Algebraic integrability, Painlev´e geometry and Lie algebras, A series of modern surveys in mathematics, Volume 47, Springer-Verlag, 2004.
  • [21] A. Lesfari, Abelian surfaces and Kowalewski’s top, Ann. Scient. ´ Ecole Norm. Sup., Paris, 4e s´erie, .21 (1988), 193-223.
  • [22] M. Adler, On a trace functional for formal pseudo differential operators and the symplectic structure of the Korteweg-de Vries type equations, Invent. Math., 50(3) (1979), 219-248.
  • [23] B. Kostant, The solution to a generalized Toda lattice and representation theory, Adv. Math., 34 (3) (1979), 195-338.
  • [24] W. Symes, Systems of Toda type, inverse spectral problems and representation theory, Invent. Math., 59 (1980), 13-53.
  • [25] A. I. Belokolos, V. Z. Bobenko, V.Z., Enol’skii, A. R. Its, V. B. Matveev, Algebro-Geometric approach to nonlinear integrable equations, Springer-Verlag, 1994.
  • [26] A. Lesfari, Integrables Hamiltonian systems and the isospectral deformation method, Int. J. of Appl. Math. And Mech., 3 (4) (2007), 35-55.
  • [27] A. Lesfari, Th´eorie spectrale et probl`emes non-lin´eaires, Surv. Math. Appl., 5 (2010), 151-190.
  • [28] A. Lesfari, Alg`ebres de Lie affines et op´erateurs pseudo-diff´erentiels d’ordre infini, Math. Rep., 14 (64),1 (2012), 43-69 (2012).
  • [29] A. Lesfari, Introduction `a la g´eom´etrie alg´ebrique complexe, ´ Editions Hermann, Paris, 2015.
  • [30] I. M. Gel’fand, L. Dickey, Family of Hamiltonian structures connected with integrable nonlinear differential equations, Funct. Anal. Appl., 2 (1968), 92-93.
  • [31] L. Dickey, Soliton equations and integrable systems, World Scientific, 1991.
  • [32] L. Dickey, Additional symmetries of KP, Grassmannian and the string equation, Mod. Phys. Lett., A 8 (1993), 1259-1272.
  • [33] L. Dickey, Lectures on classical W-algebras, Acta Appl. Math., 47 (1997), 243-321.
  • [34] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Transformation groups for soliton equations, Proc. RIMS Symp. Nonlinear integrable systems (Kyoto, 1981). Classical and quantum theory, Singapore, World Scientific (1983), 39-119.
  • [35] M. Sato, The KP hierarchy and infinite-dimensional Grassmann manifolds, Proc. of Sympos. Pure Math., 49 (1989), 51-66.
  • [36] M. Sato, Y. Sato, Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds, Lect. Notes in Num. Appl. Anal., 5 (1982), 259-271.
  • [37] T. Shiota, Characterization of jacobian varieties in terms of soliton equations, Invent. Math., 83 (1986), 333-382.

KP-KdV Hierarchy and Pseudo-Differential Operators

Year 2019, Volume: 2 Issue: 2, 75 - 104, 27.06.2019
https://doi.org/10.33434/cams.478999

Abstract

The study of KP-KdV equations are the archetype of integrable systems and are one of the most fundamental equations of soliton phenomena and a topic of active mathematical research. Our purpose here is to give a motivated and a sketchy overview of this interesting subject. One of the objectives of this paper is to study the KdV equation and the inverse scattering method (based on Schrödinger and Gelfand-Levitan equations) used to solve it exactly. We study some generalities on the algebra of infinite order differential operators. The algebras of Virasoro and Heisenberg, nonlinear evolution equations such as the KdV, Boussinesq and KP play a crucial role in this study. We make a careful study of some connection between pseudo-differential operators, symplectic structures, KP hierarchy and tau functions based on the Sato-Date-Jimbo-Miwa-Kashiwara theory. A few other connections and ideas concerning the KdV and Boussinesq equations, the Gelfand-Dickey flows, the Heisenberg and Virasoro algebras are given.

References

  • [1] D. J. Korteweg, G. de Vries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Phil. Mag., 39 (1895), 422-443.
  • [2] J. Boussinesq, Essai sur la theorie des eaux courantes, M´emoires pr´esent´es par divers savants, Acad. des Sci. Inst. Nat. France, XXIII (1877), 1-680.
  • [3] J. Scott-Russell, Report on Waves. Report to the 14th meeting British Association for Advancement of Science, (1844), 311-390.
  • [4] I. M. Gel’fand, B. M. Levitan, On the determination of a differential equation from its spectral function, Amer. Math. Soc. Transl., 2 (1) (1955), 253-304.
  • [5] N. Levinson, The inverse Sturm-Liouville problem, Mat. Tidsskr. B., (1949) 25-30.
  • [6] M. D. Kruskal, R. M. Miura, C. S. Gardner, N. J. Zabusky, Korteweg-de Vries equation and generalizations V. Uniqueness and nonexistence of polynomial consevation laws, J. Math. Phys., 11 (1970), 952-960.
  • [7] P. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math., 21 (1968), 467-490.
  • [8] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett., 19 (1967), 1095-1097.
  • [9] C. S. Gardner, Korteweg-de Vries equation and generalizations IV, The Korteweg-de Vries equation as a Hamiltonian system, J. Math. Phys., 12 (1971), 1548-1551.
  • [10] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, Korteweg-de Vries equation and generalizations VI, Methods for exact solutions, Comm. Pure Appl. Math., 27 (1974), 97-133.
  • [11] R. M. Miura, C. S. Gardner, M. D. Kruskal, Korteweg-de Vries equation and generalizations II. Existence of conservation laws and constants of motion, J. Math. Phys., 9 (1968), 1204-1209.
  • [12] P. Lax, Periodic solutions of the KdV equation, Comm. Pure Appl. Math., 28 (1975), 141-188.
  • [13] P. Lax, R. Phillips, Scattering theory for automorphic functions. Annals Math. Studies, Princeton, 1976.
  • [14] A. Lesfari, Etude des ´equations stationnaire de Schr¨odinger, int´egrale de Gelfand-Levitan et de Korteweg-de-Vries. Solitons et m´ethode de la diffusion inverse, Aequat. Math., 85 (2013), 243-272.
  • [15] M. Wadati, M. Toda, The exact N-soliton solution of the Korteweg-de Vries equation, J. Phys. Soc. Japan, 32 (1972), 1403-1411.
  • [16] B. B. Kadomtsev, V I. and Petviashvili, On the Stability of Solitary Waves in Weakly Dispersing Media, Sov. Phys. Dokl., 15 (6) (1970), 539-541.
  • [17] M. Sato, Soliton equations and the universal Grassmann manifold, Math. Lect. Note Ser. 18. Sophia University, Tokyo, 1984.
  • [18] P. van Moerbeke, Integrable foundations of string theory in Lectures on Integrable Systems, (Sophia-Antipolis, 1991), World Sci., River Edge, N.J., (1994), 163-267.
  • [19] J.-L. Gervais, Infinite family of polynomial functions of the Virasoro generators with vanishing Poisson bracket, Phys. Lett. B, 160 (4-5) (1985), 277-278.
  • [20] M. Adler, P. van Moerbeke, P. Vanhaecke, Algebraic integrability, Painlev´e geometry and Lie algebras, A series of modern surveys in mathematics, Volume 47, Springer-Verlag, 2004.
  • [21] A. Lesfari, Abelian surfaces and Kowalewski’s top, Ann. Scient. ´ Ecole Norm. Sup., Paris, 4e s´erie, .21 (1988), 193-223.
  • [22] M. Adler, On a trace functional for formal pseudo differential operators and the symplectic structure of the Korteweg-de Vries type equations, Invent. Math., 50(3) (1979), 219-248.
  • [23] B. Kostant, The solution to a generalized Toda lattice and representation theory, Adv. Math., 34 (3) (1979), 195-338.
  • [24] W. Symes, Systems of Toda type, inverse spectral problems and representation theory, Invent. Math., 59 (1980), 13-53.
  • [25] A. I. Belokolos, V. Z. Bobenko, V.Z., Enol’skii, A. R. Its, V. B. Matveev, Algebro-Geometric approach to nonlinear integrable equations, Springer-Verlag, 1994.
  • [26] A. Lesfari, Integrables Hamiltonian systems and the isospectral deformation method, Int. J. of Appl. Math. And Mech., 3 (4) (2007), 35-55.
  • [27] A. Lesfari, Th´eorie spectrale et probl`emes non-lin´eaires, Surv. Math. Appl., 5 (2010), 151-190.
  • [28] A. Lesfari, Alg`ebres de Lie affines et op´erateurs pseudo-diff´erentiels d’ordre infini, Math. Rep., 14 (64),1 (2012), 43-69 (2012).
  • [29] A. Lesfari, Introduction `a la g´eom´etrie alg´ebrique complexe, ´ Editions Hermann, Paris, 2015.
  • [30] I. M. Gel’fand, L. Dickey, Family of Hamiltonian structures connected with integrable nonlinear differential equations, Funct. Anal. Appl., 2 (1968), 92-93.
  • [31] L. Dickey, Soliton equations and integrable systems, World Scientific, 1991.
  • [32] L. Dickey, Additional symmetries of KP, Grassmannian and the string equation, Mod. Phys. Lett., A 8 (1993), 1259-1272.
  • [33] L. Dickey, Lectures on classical W-algebras, Acta Appl. Math., 47 (1997), 243-321.
  • [34] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Transformation groups for soliton equations, Proc. RIMS Symp. Nonlinear integrable systems (Kyoto, 1981). Classical and quantum theory, Singapore, World Scientific (1983), 39-119.
  • [35] M. Sato, The KP hierarchy and infinite-dimensional Grassmann manifolds, Proc. of Sympos. Pure Math., 49 (1989), 51-66.
  • [36] M. Sato, Y. Sato, Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds, Lect. Notes in Num. Appl. Anal., 5 (1982), 259-271.
  • [37] T. Shiota, Characterization of jacobian varieties in terms of soliton equations, Invent. Math., 83 (1986), 333-382.
There are 37 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Lesfari Ahmed 0000-0001-6213-4301

Publication Date June 27, 2019
Submission Date November 5, 2018
Acceptance Date March 8, 2019
Published in Issue Year 2019 Volume: 2 Issue: 2

Cite

APA Ahmed, L. (2019). KP-KdV Hierarchy and Pseudo-Differential Operators. Communications in Advanced Mathematical Sciences, 2(2), 75-104. https://doi.org/10.33434/cams.478999
AMA Ahmed L. KP-KdV Hierarchy and Pseudo-Differential Operators. Communications in Advanced Mathematical Sciences. June 2019;2(2):75-104. doi:10.33434/cams.478999
Chicago Ahmed, Lesfari. “KP-KdV Hierarchy and Pseudo-Differential Operators”. Communications in Advanced Mathematical Sciences 2, no. 2 (June 2019): 75-104. https://doi.org/10.33434/cams.478999.
EndNote Ahmed L (June 1, 2019) KP-KdV Hierarchy and Pseudo-Differential Operators. Communications in Advanced Mathematical Sciences 2 2 75–104.
IEEE L. Ahmed, “KP-KdV Hierarchy and Pseudo-Differential Operators”, Communications in Advanced Mathematical Sciences, vol. 2, no. 2, pp. 75–104, 2019, doi: 10.33434/cams.478999.
ISNAD Ahmed, Lesfari. “KP-KdV Hierarchy and Pseudo-Differential Operators”. Communications in Advanced Mathematical Sciences 2/2 (June 2019), 75-104. https://doi.org/10.33434/cams.478999.
JAMA Ahmed L. KP-KdV Hierarchy and Pseudo-Differential Operators. Communications in Advanced Mathematical Sciences. 2019;2:75–104.
MLA Ahmed, Lesfari. “KP-KdV Hierarchy and Pseudo-Differential Operators”. Communications in Advanced Mathematical Sciences, vol. 2, no. 2, 2019, pp. 75-104, doi:10.33434/cams.478999.
Vancouver Ahmed L. KP-KdV Hierarchy and Pseudo-Differential Operators. Communications in Advanced Mathematical Sciences. 2019;2(2):75-104.

Creative Commons License
The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..