Research Article
BibTex RIS Cite
Year 2019, Volume: 2 Issue: 3, 219 - 226, 30.09.2019

Abstract

References

  • [1] A. Al-Omari, T. Noiri, Local closure functions in ideal topological spaces, Novi Sad J. Math. 43(2) (2013), 139-149.
  • [2] C. Bandhopadhya, S. Modak, A new topology via y-operator, Proc. Nat. Acad. Sci. India. 76(A), IV, (2006), 317-320.
  • [3] N. Bourbaki, General Topology, Chapter 1-4, Springer, 1989.
  • [4] J. Dontchev, Idealization of Ganster-Reilly decomposition theorems, arXIV:math. Gn/9901017v1 [math.GN], 5 Jan 1999.
  • [5] E. Ekici, A new collection which contains the topology via ideals, Trans. A. Razmadze Math. Inst. 172 (2018), 372-377.
  • [6] E. Ekici, T. Noiri, Properties of I-submaximal ideal topological spaces, Filomat. 24(4) (2010), 87-94.
  • [7] E. Ekici, T. Noiri, On subsets and decompositions of continuity in ideal topological spaces, Arab. J. Sci. Eng. 34(1A) (2009), 165-177.
  • [8] T. R. Hamlett, D. Jankovi ´ c, Ideals in Topological Spaces and the Set Operator Y , Bollettino U. M. I. 7(4-B) (1990), 863-874.
  • [9] H. Hashimoto, On the -topology and its applications, Fund. Math. 91 (1976), 5-10.
  • [10] E. Hatir, T. Noiri, On decompositions of continuity via idealzaton, Acta Math. Hungar. 96 (2002), 341-349.
  • [11] E. Hayashi, Topologies defined by local properties, Math. Ann. 156 (1964), 205-215.
  • [12] Md. M. Islam, S. Modak, Operator associated with the  and Y operators, Journal of Taibah University for Science, 12(4) (2018), 444-449.
  • [13] D. Jankovi ´ c, T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly. 97 (1990), 295-310.
  • [14] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
  • [15] S. Modak, Minimal spaces with a mathematical structure, J. Assoc. Arab Univ. Basic Appl. Sci. 22 (2017), 98-101.
  • [16] S. Modak, Some new topologies on ideal topological spaces, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 82(3) (2012), 233-243. [17] S. Modak, C. Bandyopadhyay, A note on y-operator, Bull. Malays. Math. Sci. Soc. 30(1) (2007), 43-48.
  • [18] S. Modak, C. Bandyopadhyaya, Ideals and some nearly open sets, Soochow J. Math. 32(4) (2006), 541-551.
  • [19] S. Modak, C. Bandyopadhyay, -topology and generalized open sets, Soochow J. Math. 32(2) (2006), 201-210.
  • [20] S. Modak, B. Garai, S. Modak, Remarks on ideal M-space, Anal. Univ. Oradea Fasc. Mat. Tom. XIX(1) (2012), 207-215.
  • [21] S. Modak, Md. M. Islam, On  and Y operators in topological spaces with ideals, Trans. A. Razmadze Math. Inst. 172 (2018), 491-497.
  • [22] S. Modak, Md. M. Islam, New form of Njastad’s a-set and Levine’s semi-open set, J. Chung. Math. Soc. 30(2) (2017), 165-175.
  • [23] S. Modak, Md. M. Islam, More on a-topological space, Commun. Fac. Sci. Univ. Ankara Series A1: Math. and Stat. 66(2) (2017), 323-331.
  • [24] S. Modak, T. Noiri, Connectedness of Ideal Topological Spaces, Filomat. 29(4) (2015), 661-665.
  • [25] T. Natkaniec, On I-continuity and I-semicontinuity points, Math. Slovaca. 36(3) (1986), 297-312.
  • [26] A. Pavlovi ´ c, Local Function versus Local Closure Function in Ideal Topological Spaces, Filomat. 30(14) (2016), 3725-3731. [27] R. Vaidyanathswamy, Set topology, Chelsea Publishing Co., New York, 1960.
  • [28] P. Samuel, A topology formed from a given topology and ideal, J. London Math. Soc. 10 (1975), 409-416.

Characterizations of Hayashi-Samuel Spaces via Boundary Points

Year 2019, Volume: 2 Issue: 3, 219 - 226, 30.09.2019

Abstract

Some new closure operators in topological spaces with ideals are a part of this paper. A comparative study of a new type of boundary point, which is defined  with the help of the local function and the boundary points will be discussed through this paper. Characterizations of Hayashi-Samuel spaces are also an object of this paper.

References

  • [1] A. Al-Omari, T. Noiri, Local closure functions in ideal topological spaces, Novi Sad J. Math. 43(2) (2013), 139-149.
  • [2] C. Bandhopadhya, S. Modak, A new topology via y-operator, Proc. Nat. Acad. Sci. India. 76(A), IV, (2006), 317-320.
  • [3] N. Bourbaki, General Topology, Chapter 1-4, Springer, 1989.
  • [4] J. Dontchev, Idealization of Ganster-Reilly decomposition theorems, arXIV:math. Gn/9901017v1 [math.GN], 5 Jan 1999.
  • [5] E. Ekici, A new collection which contains the topology via ideals, Trans. A. Razmadze Math. Inst. 172 (2018), 372-377.
  • [6] E. Ekici, T. Noiri, Properties of I-submaximal ideal topological spaces, Filomat. 24(4) (2010), 87-94.
  • [7] E. Ekici, T. Noiri, On subsets and decompositions of continuity in ideal topological spaces, Arab. J. Sci. Eng. 34(1A) (2009), 165-177.
  • [8] T. R. Hamlett, D. Jankovi ´ c, Ideals in Topological Spaces and the Set Operator Y , Bollettino U. M. I. 7(4-B) (1990), 863-874.
  • [9] H. Hashimoto, On the -topology and its applications, Fund. Math. 91 (1976), 5-10.
  • [10] E. Hatir, T. Noiri, On decompositions of continuity via idealzaton, Acta Math. Hungar. 96 (2002), 341-349.
  • [11] E. Hayashi, Topologies defined by local properties, Math. Ann. 156 (1964), 205-215.
  • [12] Md. M. Islam, S. Modak, Operator associated with the  and Y operators, Journal of Taibah University for Science, 12(4) (2018), 444-449.
  • [13] D. Jankovi ´ c, T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly. 97 (1990), 295-310.
  • [14] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
  • [15] S. Modak, Minimal spaces with a mathematical structure, J. Assoc. Arab Univ. Basic Appl. Sci. 22 (2017), 98-101.
  • [16] S. Modak, Some new topologies on ideal topological spaces, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 82(3) (2012), 233-243. [17] S. Modak, C. Bandyopadhyay, A note on y-operator, Bull. Malays. Math. Sci. Soc. 30(1) (2007), 43-48.
  • [18] S. Modak, C. Bandyopadhyaya, Ideals and some nearly open sets, Soochow J. Math. 32(4) (2006), 541-551.
  • [19] S. Modak, C. Bandyopadhyay, -topology and generalized open sets, Soochow J. Math. 32(2) (2006), 201-210.
  • [20] S. Modak, B. Garai, S. Modak, Remarks on ideal M-space, Anal. Univ. Oradea Fasc. Mat. Tom. XIX(1) (2012), 207-215.
  • [21] S. Modak, Md. M. Islam, On  and Y operators in topological spaces with ideals, Trans. A. Razmadze Math. Inst. 172 (2018), 491-497.
  • [22] S. Modak, Md. M. Islam, New form of Njastad’s a-set and Levine’s semi-open set, J. Chung. Math. Soc. 30(2) (2017), 165-175.
  • [23] S. Modak, Md. M. Islam, More on a-topological space, Commun. Fac. Sci. Univ. Ankara Series A1: Math. and Stat. 66(2) (2017), 323-331.
  • [24] S. Modak, T. Noiri, Connectedness of Ideal Topological Spaces, Filomat. 29(4) (2015), 661-665.
  • [25] T. Natkaniec, On I-continuity and I-semicontinuity points, Math. Slovaca. 36(3) (1986), 297-312.
  • [26] A. Pavlovi ´ c, Local Function versus Local Closure Function in Ideal Topological Spaces, Filomat. 30(14) (2016), 3725-3731. [27] R. Vaidyanathswamy, Set topology, Chelsea Publishing Co., New York, 1960.
  • [28] P. Samuel, A topology formed from a given topology and ideal, J. London Math. Soc. 10 (1975), 409-416.
There are 26 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Shyamapada Modak 0000-0002-0226-2392

Sk Selim This is me 0000-0002-4226-2004

Md. Monirul Islam 0000-0003-4748-4690

Publication Date September 30, 2019
Submission Date March 29, 2019
Acceptance Date August 1, 2019
Published in Issue Year 2019 Volume: 2 Issue: 3

Cite

APA Modak, S., Selim, S., & Islam, M. M. (2019). Characterizations of Hayashi-Samuel Spaces via Boundary Points. Communications in Advanced Mathematical Sciences, 2(3), 219-226.
AMA Modak S, Selim S, Islam MM. Characterizations of Hayashi-Samuel Spaces via Boundary Points. Communications in Advanced Mathematical Sciences. September 2019;2(3):219-226.
Chicago Modak, Shyamapada, Sk Selim, and Md. Monirul Islam. “Characterizations of Hayashi-Samuel Spaces via Boundary Points”. Communications in Advanced Mathematical Sciences 2, no. 3 (September 2019): 219-26.
EndNote Modak S, Selim S, Islam MM (September 1, 2019) Characterizations of Hayashi-Samuel Spaces via Boundary Points. Communications in Advanced Mathematical Sciences 2 3 219–226.
IEEE S. Modak, S. Selim, and M. M. Islam, “Characterizations of Hayashi-Samuel Spaces via Boundary Points”, Communications in Advanced Mathematical Sciences, vol. 2, no. 3, pp. 219–226, 2019.
ISNAD Modak, Shyamapada et al. “Characterizations of Hayashi-Samuel Spaces via Boundary Points”. Communications in Advanced Mathematical Sciences 2/3 (September 2019), 219-226.
JAMA Modak S, Selim S, Islam MM. Characterizations of Hayashi-Samuel Spaces via Boundary Points. Communications in Advanced Mathematical Sciences. 2019;2:219–226.
MLA Modak, Shyamapada et al. “Characterizations of Hayashi-Samuel Spaces via Boundary Points”. Communications in Advanced Mathematical Sciences, vol. 2, no. 3, 2019, pp. 219-26.
Vancouver Modak S, Selim S, Islam MM. Characterizations of Hayashi-Samuel Spaces via Boundary Points. Communications in Advanced Mathematical Sciences. 2019;2(3):219-26.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..