Research Article
BibTex RIS Cite

Norm Properties of $S$-Universal Operators

Year 2020, Volume: 3 Issue: 2, 82 - 90, 30.06.2020

Abstract

We investigate the norm properties of a generalized derivation on a norm ideal $\mathcal{J}$ in $\mathcal{B}(H)$, the algebra of bounded linear operators on a Hilbert space $H$. Specifically, we extend the concept of $S-$universality from the inner derivation to the generalized derivation context, establish the necessary conditions for the attainment of the optimal value of the circumdiameters of numerical ranges and the spectra of two bounded linear operators on $H$. Moreover, we characterize the antidistance from an operator to its similarity orbit in terms of the circumdiameters, norms, numerical and spectra radii of a pair of $S$-universal operators.

Supporting Institution

MASENO UNIVERSITY

Thanks

I would like to thank the DergiPark for providing this platform for scholars and academia to submit their articles for publication.

References

  • [1] J. G. Stampfli, The norm of a derivation, Pac. J. Math. 33 (1970).
  • [2] R. Schatten, Norm ideals of completely continuos operators, Springler-Verlag,Berlin (1960),55-79.
  • [3] L. A. Fialkow, A note on norm ideals and the operator $X\rightarrow AX-XB$, Isr. J. Math., 32 (1979), 331-348.
  • [4] M. Barraa and M. Boumazgour, Inner derivation and norm equality, Proc. Amer. Math. Soc., 130(2) (2001), 471-476.
  • [5] J. O. Bonyo and J. O. Agure, Norms of Derivations Implemented by S-universal Operators, Int. J. Math. Anal., 5(5) (2011), 215-222
  • [6] J. O. Bonyo and J. O. Agure, Norms of Inner Derivations on Norm Ideals, Int. J. Math. Anal., 4 (14)(2010), 695-701.
  • [7] F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag New York Heidelberg Berlin 1973.
  • [8] A. Pere and M. Martin, Local Multipliers of $C^{*}-Algebras$Algebras, Springer-Verlag, Lodon New York Heidelberg Berlin.
  • [9] S. Y. Shaw, On numerical ranges of generalized derivations and related properties, J. Austral. Math. Soc., 36 (1984), 134-142.
  • [10] C. S. Lin,The Unilateral Shift and a Norm Equality for Bounded Linear Operators, Proc. Amer. Math. Soc., 127 (1999) No. 6, 1693-1696.
  • [11] M. Barraa and S. Pedersen,On the Product of two Generalized Derivations, Proc. Amer. Math. Soc., 127 (1999), 2679-2683.
  • [12] P. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, 1970.
  • [13] T. Ando, Bounds for Anti-distance, J. Convex Anal., 3 (1996) No. 2, 371-373.
Year 2020, Volume: 3 Issue: 2, 82 - 90, 30.06.2020

Abstract

References

  • [1] J. G. Stampfli, The norm of a derivation, Pac. J. Math. 33 (1970).
  • [2] R. Schatten, Norm ideals of completely continuos operators, Springler-Verlag,Berlin (1960),55-79.
  • [3] L. A. Fialkow, A note on norm ideals and the operator $X\rightarrow AX-XB$, Isr. J. Math., 32 (1979), 331-348.
  • [4] M. Barraa and M. Boumazgour, Inner derivation and norm equality, Proc. Amer. Math. Soc., 130(2) (2001), 471-476.
  • [5] J. O. Bonyo and J. O. Agure, Norms of Derivations Implemented by S-universal Operators, Int. J. Math. Anal., 5(5) (2011), 215-222
  • [6] J. O. Bonyo and J. O. Agure, Norms of Inner Derivations on Norm Ideals, Int. J. Math. Anal., 4 (14)(2010), 695-701.
  • [7] F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag New York Heidelberg Berlin 1973.
  • [8] A. Pere and M. Martin, Local Multipliers of $C^{*}-Algebras$Algebras, Springer-Verlag, Lodon New York Heidelberg Berlin.
  • [9] S. Y. Shaw, On numerical ranges of generalized derivations and related properties, J. Austral. Math. Soc., 36 (1984), 134-142.
  • [10] C. S. Lin,The Unilateral Shift and a Norm Equality for Bounded Linear Operators, Proc. Amer. Math. Soc., 127 (1999) No. 6, 1693-1696.
  • [11] M. Barraa and S. Pedersen,On the Product of two Generalized Derivations, Proc. Amer. Math. Soc., 127 (1999), 2679-2683.
  • [12] P. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, 1970.
  • [13] T. Ando, Bounds for Anti-distance, J. Convex Anal., 3 (1996) No. 2, 371-373.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Joshua Muholo 0000-0001-8411-6606

Job Bonyo 0000-0002-6442-4211

Publication Date June 30, 2020
Submission Date February 22, 2020
Acceptance Date June 17, 2020
Published in Issue Year 2020 Volume: 3 Issue: 2

Cite

APA Muholo, J., & Bonyo, J. (2020). Norm Properties of $S$-Universal Operators. Communications in Advanced Mathematical Sciences, 3(2), 82-90.
AMA Muholo J, Bonyo J. Norm Properties of $S$-Universal Operators. Communications in Advanced Mathematical Sciences. June 2020;3(2):82-90.
Chicago Muholo, Joshua, and Job Bonyo. “Norm Properties of $S$-Universal Operators”. Communications in Advanced Mathematical Sciences 3, no. 2 (June 2020): 82-90.
EndNote Muholo J, Bonyo J (June 1, 2020) Norm Properties of $S$-Universal Operators. Communications in Advanced Mathematical Sciences 3 2 82–90.
IEEE J. Muholo and J. Bonyo, “Norm Properties of $S$-Universal Operators”, Communications in Advanced Mathematical Sciences, vol. 3, no. 2, pp. 82–90, 2020.
ISNAD Muholo, Joshua - Bonyo, Job. “Norm Properties of $S$-Universal Operators”. Communications in Advanced Mathematical Sciences 3/2 (June 2020), 82-90.
JAMA Muholo J, Bonyo J. Norm Properties of $S$-Universal Operators. Communications in Advanced Mathematical Sciences. 2020;3:82–90.
MLA Muholo, Joshua and Job Bonyo. “Norm Properties of $S$-Universal Operators”. Communications in Advanced Mathematical Sciences, vol. 3, no. 2, 2020, pp. 82-90.
Vancouver Muholo J, Bonyo J. Norm Properties of $S$-Universal Operators. Communications in Advanced Mathematical Sciences. 2020;3(2):82-90.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..