Research Article
PDF BibTex RIS Cite

Some Properties of Generalized Topologies in GTSs

Year 2020, Volume: 3 Issue: 3, 162 - 172, 29.09.2020
https://doi.org/10.33434/cams.769793

Abstract

In this article, we introduce one new generalized topology and investigate its properties in a generalized topological space. Also, we give various properties of some generalized topologies defined in a generalized topological space. Finally, we analyze the nature of some special spaces.                                                                                                                                                                                                                                                                                                 

Supporting Institution

A. K. D. Dharma Raja Women's College, Rajapalayam, Tamilnadu, India.

References

  • [1] M. R. Ahmadi Zand and R. Khayyeri, Generalized Gd -submaximal spaces, Acta Math. Hungar., 149 (2) (2016), 274 - 285.
  • [2] S. Al Ghour, A. Al-Omari and T. Noiri, On homogeneity and homogeneity components in generalized topological spaces, Filomat, 27 (2013), 1097 - 1105.
  • [3] A. Csaszar, Generalized open sets, Acta Math. Hungar., 75 (1997), 65 - 87.
  • [4] A. Csaszar, Extremally disconnected generalized topologies, Annales Univ. Sci. Budapest., 47 (2004), 91 - 96.
  • [5] A. CsAszar, Generalized open sets in generalized topologies, Acta Math. Hungar. 106 (1 - 2) (2005), 53 - 66.
  • [6] E. Ekici, Generalized hyperconnectedness, Acta Mathematica Hungarica, 133 (1 - 2) (2011), 140 - 147.
  • [7] E. Ekici, Generalized Submaximal Spaces, Acta Math. Hungar., 134 (1 – 2) (2012), 132 - 138.
  • [8] E. Korczak - Kubiak, A. Loranty and R. J. Pawlak, Baire generalized topological spaces, generalized metric spaces and infinite games, Acta Math. Hungar., 140 (2013), 203 - 231.
  • [9] Z. Li and F. Lin, Baireness on generalized topological spaces, Acta Math. Hungar., 139 (4) (2013), 320 - 336.
  • [10] W. K. Min, On weak neighborhood systems and spaces, Acta Math. Hungar., 121 (3) (2008), 283 - 292.
  • [11] V. Renukadevi and S. Vadakasi, On lower and upper semi-continuous functions, Acta Math. Hungar., 160 (2020), 1 - 12.
  • [12] S. Vadakasi and V. Renukadevi, Properties of nowhere dense sets in GTSs, Kyungpook Math. J., 57 (2017), 199 - 210.
  • [13] S. Vadakasi and V. Renukadevi, Special functions on GTSs, Communicated.
  • [14] S. Vadakasi and V. Renukadevi Two classes of functions, Communicated.

Year 2020, Volume: 3 Issue: 3, 162 - 172, 29.09.2020
https://doi.org/10.33434/cams.769793

Abstract

References

  • [1] M. R. Ahmadi Zand and R. Khayyeri, Generalized Gd -submaximal spaces, Acta Math. Hungar., 149 (2) (2016), 274 - 285.
  • [2] S. Al Ghour, A. Al-Omari and T. Noiri, On homogeneity and homogeneity components in generalized topological spaces, Filomat, 27 (2013), 1097 - 1105.
  • [3] A. Csaszar, Generalized open sets, Acta Math. Hungar., 75 (1997), 65 - 87.
  • [4] A. Csaszar, Extremally disconnected generalized topologies, Annales Univ. Sci. Budapest., 47 (2004), 91 - 96.
  • [5] A. CsAszar, Generalized open sets in generalized topologies, Acta Math. Hungar. 106 (1 - 2) (2005), 53 - 66.
  • [6] E. Ekici, Generalized hyperconnectedness, Acta Mathematica Hungarica, 133 (1 - 2) (2011), 140 - 147.
  • [7] E. Ekici, Generalized Submaximal Spaces, Acta Math. Hungar., 134 (1 – 2) (2012), 132 - 138.
  • [8] E. Korczak - Kubiak, A. Loranty and R. J. Pawlak, Baire generalized topological spaces, generalized metric spaces and infinite games, Acta Math. Hungar., 140 (2013), 203 - 231.
  • [9] Z. Li and F. Lin, Baireness on generalized topological spaces, Acta Math. Hungar., 139 (4) (2013), 320 - 336.
  • [10] W. K. Min, On weak neighborhood systems and spaces, Acta Math. Hungar., 121 (3) (2008), 283 - 292.
  • [11] V. Renukadevi and S. Vadakasi, On lower and upper semi-continuous functions, Acta Math. Hungar., 160 (2020), 1 - 12.
  • [12] S. Vadakasi and V. Renukadevi, Properties of nowhere dense sets in GTSs, Kyungpook Math. J., 57 (2017), 199 - 210.
  • [13] S. Vadakasi and V. Renukadevi, Special functions on GTSs, Communicated.
  • [14] S. Vadakasi and V. Renukadevi Two classes of functions, Communicated.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Vadakasi SUBRAMANİAN
A.K.D.Dharma Raja Women's College, Rajapalayam, Tamilnadu
India

Publication Date September 29, 2020
Submission Date July 15, 2020
Acceptance Date September 26, 2020
Published in Issue Year 2020 Volume: 3 Issue: 3

Cite

Bibtex @research article { cams769793, journal = {Communications in Advanced Mathematical Sciences}, issn = {2651-4001}, address = {}, publisher = {Emrah Evren KARA}, year = {2020}, volume = {3}, number = {3}, pages = {162 - 172}, doi = {10.33434/cams.769793}, title = {Some Properties of Generalized Topologies in GTSs}, key = {cite}, author = {Subramanian, Vadakasi} }
APA Subramanian, V. (2020). Some Properties of Generalized Topologies in GTSs . Communications in Advanced Mathematical Sciences , 3 (3) , 162-172 . DOI: 10.33434/cams.769793
MLA Subramanian, V. "Some Properties of Generalized Topologies in GTSs" . Communications in Advanced Mathematical Sciences 3 (2020 ): 162-172 <https://dergipark.org.tr/en/pub/cams/issue/56960/769793>
Chicago Subramanian, V. "Some Properties of Generalized Topologies in GTSs". Communications in Advanced Mathematical Sciences 3 (2020 ): 162-172
RIS TY - JOUR T1 - Some Properties of Generalized Topologies in GTSs AU - VadakasiSubramanian Y1 - 2020 PY - 2020 N1 - doi: 10.33434/cams.769793 DO - 10.33434/cams.769793 T2 - Communications in Advanced Mathematical Sciences JF - Journal JO - JOR SP - 162 EP - 172 VL - 3 IS - 3 SN - 2651-4001- M3 - doi: 10.33434/cams.769793 UR - https://doi.org/10.33434/cams.769793 Y2 - 2020 ER -
EndNote %0 Communications in Advanced Mathematical Sciences Some Properties of Generalized Topologies in GTSs %A Vadakasi Subramanian %T Some Properties of Generalized Topologies in GTSs %D 2020 %J Communications in Advanced Mathematical Sciences %P 2651-4001- %V 3 %N 3 %R doi: 10.33434/cams.769793 %U 10.33434/cams.769793
ISNAD Subramanian, Vadakasi . "Some Properties of Generalized Topologies in GTSs". Communications in Advanced Mathematical Sciences 3 / 3 (September 2020): 162-172 . https://doi.org/10.33434/cams.769793
AMA Subramanian V. Some Properties of Generalized Topologies in GTSs. Communications in Advanced Mathematical Sciences. 2020; 3(3): 162-172.
Vancouver Subramanian V. Some Properties of Generalized Topologies in GTSs. Communications in Advanced Mathematical Sciences. 2020; 3(3): 162-172.
IEEE V. Subramanian , "Some Properties of Generalized Topologies in GTSs", Communications in Advanced Mathematical Sciences, vol. 3, no. 3, pp. 162-172, Sep. 2020, doi:10.33434/cams.769793
Creative Commons License
The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.