Research Article
PDF BibTex RIS Cite

Year 2020, Volume: 3 Issue: 4, 173 - 185, 22.12.2020
https://doi.org/10.33434/cams.725619

Abstract

References

  • [1] P. Gora, A. Boyarsky, Absolutely continuous invariant measures for random maps with position dependent probabilities, Math. Anal. and Appl., 278 (2003), 225 – 242.
  • [2] M. Barnsley, Fractals Everywhere, Academic Press, London. 1998.
  • [3] A. Boyarsky, P. Gora, A dynamical model for interference effects and two slit experiment of quantum physics, Phys, Lett. A., 168 (1992), 103 – 112.
  • [4] W. Slomczynski, J. Kwapien, K. Zyczkowski, Entropy computing via integration over fractal measures, Chaos, 10 (2000), 180-188.
  • [5] W. Bahsoun, P. Gora, S. Mayoral, M. Morales, Random dynamics and finance: constructing implied binomial trees from a predetermined stationary density, Appl. Stochastic Models Bus. Ind., 23 (2007), 181– 212.
  • [6] K.R. Schenk-Hoppe, Random Dynamical Systems in Economics, working paper series, Institute of empirical research in economics, University of Zurich, ISSN 1424-0459 (2000).
  • [7] M.S. Islam, Existence, approximation and properties of absolutely continuous invariant measures for random maps, PhD thesis, Concordia University, 2004.
  • [8] S. Pelikan, Invariant densities for random maps of the interval, Proc. Amer. Math. Soc., 281 (1984), 813 – 825.
  • [9] A. Lasota, J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc., 186 (1973) , 481– 488.
  • [10] S.M. Ulam, A collection of Mathematical problems Interscience Tracts in pure and Applied Math., 8, Interscience, New York, 1960.
  • [11] T-Y. Li, Finite approximation for the Frobenius-Perron operator: A solution to Ulam’s conjecture, J. Approx. Theory. 17 (1976), 177 – 186.
  • [12] J. Ding, Z. Wang, Parallel Computation of Invariant Measures,Annals of Operations Research, 103 (2001), 283 – 290.
  • [13] W. Bahsoun, P. Gora, Position Dependent Random Maps in One and Higher Dimensions, Studia Math., 166 (2005), 271 – 286.
  • [14] A. Boyarsky, P. Gora, Laws of Chaos: Invariant Measures And Dynamical Systems In One Dimension, Birkhauser, 1997.
  • [15] F.Y. Hunt, A Monte Carlo approach to the approximation of invariant measure, Random Comput. Dynam., 2(1) (1994), 111 – 133.

Monte Carlo and Quasi Monte Carlo Approach to Ulam's Method for Position Dependent Random Maps

Year 2020, Volume: 3 Issue: 4, 173 - 185, 22.12.2020
https://doi.org/10.33434/cams.725619

Abstract

We consider position random maps $T=\{\tau_1(x),\tau_2(x),\ldots, \tau_K(x); p_1(x),p_2(x),\ldots,p_K(x)\}$ on $I=[0, 1],$ where $\tau_k, k=1, 2, \dots, K$ is non-singular map on $[0,1]$ into $[0, 1]$ and $\{p_1(x),p_2(x),\ldots,p_K(x)\}$ is a set of position dependent probabilities on $[0, 1]$. We assume that the random map $T$ posses a density function $f^*$ of the unique absolutely continuous invariant measure (acim) $\mu^*$. In this paper, first, we present a general numerical algorithm for the approximation of the density function $f^*.$ Moreover, we show that Ulam's method is a special case of the general method. Finally, we describe a Monte-Carlo and a Quasi Monte Carlo implementations of Ulam's method for the approximation of $f^*$. The main advantage of these methods is that we do not need to find the inverse images of subsets under the transformations of the random map $T$.

References

  • [1] P. Gora, A. Boyarsky, Absolutely continuous invariant measures for random maps with position dependent probabilities, Math. Anal. and Appl., 278 (2003), 225 – 242.
  • [2] M. Barnsley, Fractals Everywhere, Academic Press, London. 1998.
  • [3] A. Boyarsky, P. Gora, A dynamical model for interference effects and two slit experiment of quantum physics, Phys, Lett. A., 168 (1992), 103 – 112.
  • [4] W. Slomczynski, J. Kwapien, K. Zyczkowski, Entropy computing via integration over fractal measures, Chaos, 10 (2000), 180-188.
  • [5] W. Bahsoun, P. Gora, S. Mayoral, M. Morales, Random dynamics and finance: constructing implied binomial trees from a predetermined stationary density, Appl. Stochastic Models Bus. Ind., 23 (2007), 181– 212.
  • [6] K.R. Schenk-Hoppe, Random Dynamical Systems in Economics, working paper series, Institute of empirical research in economics, University of Zurich, ISSN 1424-0459 (2000).
  • [7] M.S. Islam, Existence, approximation and properties of absolutely continuous invariant measures for random maps, PhD thesis, Concordia University, 2004.
  • [8] S. Pelikan, Invariant densities for random maps of the interval, Proc. Amer. Math. Soc., 281 (1984), 813 – 825.
  • [9] A. Lasota, J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc., 186 (1973) , 481– 488.
  • [10] S.M. Ulam, A collection of Mathematical problems Interscience Tracts in pure and Applied Math., 8, Interscience, New York, 1960.
  • [11] T-Y. Li, Finite approximation for the Frobenius-Perron operator: A solution to Ulam’s conjecture, J. Approx. Theory. 17 (1976), 177 – 186.
  • [12] J. Ding, Z. Wang, Parallel Computation of Invariant Measures,Annals of Operations Research, 103 (2001), 283 – 290.
  • [13] W. Bahsoun, P. Gora, Position Dependent Random Maps in One and Higher Dimensions, Studia Math., 166 (2005), 271 – 286.
  • [14] A. Boyarsky, P. Gora, Laws of Chaos: Invariant Measures And Dynamical Systems In One Dimension, Birkhauser, 1997.
  • [15] F.Y. Hunt, A Monte Carlo approach to the approximation of invariant measure, Random Comput. Dynam., 2(1) (1994), 111 – 133.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Md Shafiqul ISLAM
University of Prince Edward Island
Canada

Publication Date December 22, 2020
Submission Date April 22, 2020
Acceptance Date October 15, 2020
Published in Issue Year 2020 Volume: 3 Issue: 4

Cite

Bibtex @research article { cams725619, journal = {Communications in Advanced Mathematical Sciences}, issn = {2651-4001}, address = {}, publisher = {Emrah Evren KARA}, year = {2020}, volume = {3}, number = {4}, pages = {173 - 185}, doi = {10.33434/cams.725619}, title = {Monte Carlo and Quasi Monte Carlo Approach to Ulam's Method for Position Dependent Random Maps}, key = {cite}, author = {Islam, Md Shafiqul} }
APA Islam, M. S. (2020). Monte Carlo and Quasi Monte Carlo Approach to Ulam's Method for Position Dependent Random Maps . Communications in Advanced Mathematical Sciences , 3 (4) , 173-185 . DOI: 10.33434/cams.725619
MLA Islam, M. S. "Monte Carlo and Quasi Monte Carlo Approach to Ulam's Method for Position Dependent Random Maps" . Communications in Advanced Mathematical Sciences 3 (2020 ): 173-185 <https://dergipark.org.tr/en/pub/cams/issue/58497/725619>
Chicago Islam, M. S. "Monte Carlo and Quasi Monte Carlo Approach to Ulam's Method for Position Dependent Random Maps". Communications in Advanced Mathematical Sciences 3 (2020 ): 173-185
RIS TY - JOUR T1 - Monte Carlo and Quasi Monte Carlo Approach to Ulam's Method for Position Dependent Random Maps AU - Md ShafiqulIslam Y1 - 2020 PY - 2020 N1 - doi: 10.33434/cams.725619 DO - 10.33434/cams.725619 T2 - Communications in Advanced Mathematical Sciences JF - Journal JO - JOR SP - 173 EP - 185 VL - 3 IS - 4 SN - 2651-4001- M3 - doi: 10.33434/cams.725619 UR - https://doi.org/10.33434/cams.725619 Y2 - 2020 ER -
EndNote %0 Communications in Advanced Mathematical Sciences Monte Carlo and Quasi Monte Carlo Approach to Ulam's Method for Position Dependent Random Maps %A Md Shafiqul Islam %T Monte Carlo and Quasi Monte Carlo Approach to Ulam's Method for Position Dependent Random Maps %D 2020 %J Communications in Advanced Mathematical Sciences %P 2651-4001- %V 3 %N 4 %R doi: 10.33434/cams.725619 %U 10.33434/cams.725619
ISNAD Islam, Md Shafiqul . "Monte Carlo and Quasi Monte Carlo Approach to Ulam's Method for Position Dependent Random Maps". Communications in Advanced Mathematical Sciences 3 / 4 (December 2020): 173-185 . https://doi.org/10.33434/cams.725619
AMA Islam M. S. Monte Carlo and Quasi Monte Carlo Approach to Ulam's Method for Position Dependent Random Maps. Communications in Advanced Mathematical Sciences. 2020; 3(4): 173-185.
Vancouver Islam M. S. Monte Carlo and Quasi Monte Carlo Approach to Ulam's Method for Position Dependent Random Maps. Communications in Advanced Mathematical Sciences. 2020; 3(4): 173-185.
IEEE M. S. Islam , "Monte Carlo and Quasi Monte Carlo Approach to Ulam's Method for Position Dependent Random Maps", Communications in Advanced Mathematical Sciences, vol. 3, no. 4, pp. 173-185, Dec. 2020, doi:10.33434/cams.725619
Creative Commons License
The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.