Primary Language | English |
---|---|
Subjects | Mathematical Sciences |
Journal Section | Articles |
Authors |
|
Publication Date | March 29, 2021 |
Submission Date | October 21, 2020 |
Acceptance Date | March 27, 2021 |
Published in Issue | Year 2021 Volume: 4 Issue: 1 |
Bibtex | @research article { cams814296, journal = {Communications in Advanced Mathematical Sciences}, issn = {2651-4001}, address = {}, publisher = {Emrah Evren KARA}, year = {2021}, volume = {4}, number = {1}, pages = {46 - 54}, doi = {10.33434/cams.814296}, title = {On the Recursive Sequence \$x\_\{n+1\}= \\frac\{x\_\{n-29\}\}\{1+x\_\{n-4\}x\_\{n-9\}x\_\{n-14\}x\_\{n-19\}x\_\{n-24\}\}\$}, key = {cite}, author = {Oğul, Burak and Şimşek, Dağistan} } |
APA | Oğul, B. & Şimşek, D. (2021). On the Recursive Sequence $x_{n+1}= \frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}}$ . Communications in Advanced Mathematical Sciences , 4 (1) , 46-54 . DOI: 10.33434/cams.814296 |
MLA | Oğul, B. , Şimşek, D. "On the Recursive Sequence $x_{n+1}= \frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}}$" . Communications in Advanced Mathematical Sciences 4 (2021 ): 46-54 <https://dergipark.org.tr/en/pub/cams/issue/60931/814296> |
Chicago | Oğul, B. , Şimşek, D. "On the Recursive Sequence $x_{n+1}= \frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}}$". Communications in Advanced Mathematical Sciences 4 (2021 ): 46-54 |
RIS | TY - JOUR T1 - On the Recursive Sequence $x_{n+1}= \frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}}$ AU - BurakOğul, DağistanŞimşek Y1 - 2021 PY - 2021 N1 - doi: 10.33434/cams.814296 DO - 10.33434/cams.814296 T2 - Communications in Advanced Mathematical Sciences JF - Journal JO - JOR SP - 46 EP - 54 VL - 4 IS - 1 SN - 2651-4001- M3 - doi: 10.33434/cams.814296 UR - https://doi.org/10.33434/cams.814296 Y2 - 2021 ER - |
EndNote | %0 Communications in Advanced Mathematical Sciences On the Recursive Sequence $x_{n+1}= \frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}}$ %A Burak Oğul , Dağistan Şimşek %T On the Recursive Sequence $x_{n+1}= \frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}}$ %D 2021 %J Communications in Advanced Mathematical Sciences %P 2651-4001- %V 4 %N 1 %R doi: 10.33434/cams.814296 %U 10.33434/cams.814296 |
ISNAD | Oğul, Burak , Şimşek, Dağistan . "On the Recursive Sequence $x_{n+1}= \frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}}$". Communications in Advanced Mathematical Sciences 4 / 1 (March 2021): 46-54 . https://doi.org/10.33434/cams.814296 |
AMA | Oğul B. , Şimşek D. On the Recursive Sequence $x_{n+1}= \frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}}$. Communications in Advanced Mathematical Sciences. 2021; 4(1): 46-54. |
Vancouver | Oğul B. , Şimşek D. On the Recursive Sequence $x_{n+1}= \frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}}$. Communications in Advanced Mathematical Sciences. 2021; 4(1): 46-54. |
IEEE | B. Oğul and D. Şimşek , "On the Recursive Sequence $x_{n+1}= \frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}}$", Communications in Advanced Mathematical Sciences, vol. 4, no. 1, pp. 46-54, Mar. 2021, doi:10.33434/cams.814296 |