Research Article
PDF BibTex RIS Cite

Numerical Solution of a Quadratic Integral Equation through Classical Schauder Fixed Point Theorem

Year 2021, Volume: 4 Issue: 1, 39 - 45, 29.03.2021
https://doi.org/10.33434/cams.860254

Abstract

In this paper, we investigate the existence of at least one solution on the closed interval for quadratic integral equations with non-linear modification of the argument in Hölder spaces using the technique in the classical Schauder fixed point theorem.

References

  • [1] M. Benchohra, M. A. Darwish, On unique Solvability of Quadratic Integral Equations with Linear Modification of the Argument, Miskolc Math. Notes, 10 (2009), 3-10.
  • [2] J. Banas, R. Nalepa, On the space of functions with growths tempered by a modulus of continuity and its applications, J. Funct. Space Appl. (2013), 13 pages, doi:http://dx.doi.org/10.1155/2013/820437.
  • [3] J. Caballero, M. Abdalla, K. Sadarangani, Solvability of a quadratic integral equation of fredholm type in H¨older spaces, Electron. J. Differ. Eq., 31 (2014), 1-10.
  • [4] J. Schauder, Der Fixpunktsatz in Funktionalriiumen, Studia Math., 2 (1930), 171-180.
  • [5] J. Banas, A. Chlebowicz, On an elementrary inequality and its application in theory of integral equations, J. Math. Ineq., 11 (2) (2017), 595-605.
  • [6] J. Caballero, B. Lopez, K. Sadarangani, Existence of nondecreasing and continuous solutions of an integral equation with linear modification of the argument, Acta Math. Sin. (Engl. Ser.), 23 (9) (2007), 1719-1728.
  • [7] M. A. Darwish, On quadratic integral equation of fractional orders, J. Math. Anal. Appl., 311(1) (2005),112-119.
  • [8] S. Hu, M. Khavanin, W. Zhuang, Integral equations arising in the kinetic theory of gases, Appl. Anal., 34 (1989),261-266.
  • [9] C. A. Stuart, Existence theorems for a class of non-linear integral equations, Math. Z., 137 (1974) 49-66.
  • [10] J. Banas, A. Chlebowicz, On existence of integrable solutions of a functional integral equation under Carath´eodory conditions, Nonlinear Anal., 70 (2009), 3172-3179.
  • [11] J. Bana´s, B. Rzepka, On local attractivity and asymptotic stability of solutions of a quadratic Volterra integral equation, Appl. Math. Comput., 213 (2009), 102-111.
  • [12] H. Deepmala, K. Pathak, A study on some problems on existence of solutions for nonlinear functional-integral equations, Acta Math. Scientia, 33 (2013), 1305-1313.
  • [13] H. Deepmala, K. Pathak, Study on existence of solutions for some nonlinear functional-integral equations with applications, Math. Commun., 18 (2013), 97-107.
  • [14] K. Maleknejad, K. Nouri, R. Mollapourasl, Existence of solutions for some nonlinear integral equations, Communications in Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 2559-2564.
  • [15] K. Maleknejad, K. Nouri, R. Mollapourasl, Investigation on the existence of solutions for some nonlinear functional-integral equations, Nonlinear Anal., 71 (2009), 1575-1578.
  • [16] L. N. Mishra, R. P. Agarwal, M. Sen, Solvability and asymptotic behavior for some nonlinear quadratic integral equation involving Erd´elyi-Kober fractional integrals on the unbounded interval, Prog. Frac. Differ. Appli., 2 (3) (2016).
  • [17] L. N. Mishra, M. Sen, On the concept of existence and local attractivity of solutions for some quadratic Volterra integral equation of fractional order, Appl. Math. Comput., (2016), http://dx.doi.org/10.1016/j.amc.2016.03.002.
  • [18] L. Liu, F. Guo, C. Wu, Y. Wu, Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces, J. Math. Anal. Appl., 309 (2005), 638-649.
  • [19] J. Mallet-Paret, R.D. Nussbam, Inequivalent measures of noncompactness and the radius of the essential spectrum, Proc. Amer. Math. Soc., (2010), 917-930.
  • [20] G. Micula, G. Fairweather, Direct numerical spline methods for first order Fredholm integro-differential equations, Rev. Anal. Numer. Theory Approx., 22 (1) (1993), 59-66.
  • [21] M. Mursaleen, S.A. Mohiuddine, Applications of noncompactness to the infinite system of differential equations in `p spaces, Nonlinear Anal. Theory Methods Appl., 75 (4) (2012), 2111-2115.
  • [22] L. Olszowy, Solvability of infinite systems of singular integral equations in Fr´echet space of continuous functions, Comp. Math. Appl. 59 (2010), 2794-2801.
  • [23] M. J. Caballero, R.Nalepa, K. Sadarangani, Solvability of a quadratic integral equation of Fredholm type with Supremum in H¨older Spaces, J. Funct. Space Appl., (2014), 7 pages, doi:http://dx.doi.org/10.1155/2014/856183.

Year 2021, Volume: 4 Issue: 1, 39 - 45, 29.03.2021
https://doi.org/10.33434/cams.860254

Abstract

References

  • [1] M. Benchohra, M. A. Darwish, On unique Solvability of Quadratic Integral Equations with Linear Modification of the Argument, Miskolc Math. Notes, 10 (2009), 3-10.
  • [2] J. Banas, R. Nalepa, On the space of functions with growths tempered by a modulus of continuity and its applications, J. Funct. Space Appl. (2013), 13 pages, doi:http://dx.doi.org/10.1155/2013/820437.
  • [3] J. Caballero, M. Abdalla, K. Sadarangani, Solvability of a quadratic integral equation of fredholm type in H¨older spaces, Electron. J. Differ. Eq., 31 (2014), 1-10.
  • [4] J. Schauder, Der Fixpunktsatz in Funktionalriiumen, Studia Math., 2 (1930), 171-180.
  • [5] J. Banas, A. Chlebowicz, On an elementrary inequality and its application in theory of integral equations, J. Math. Ineq., 11 (2) (2017), 595-605.
  • [6] J. Caballero, B. Lopez, K. Sadarangani, Existence of nondecreasing and continuous solutions of an integral equation with linear modification of the argument, Acta Math. Sin. (Engl. Ser.), 23 (9) (2007), 1719-1728.
  • [7] M. A. Darwish, On quadratic integral equation of fractional orders, J. Math. Anal. Appl., 311(1) (2005),112-119.
  • [8] S. Hu, M. Khavanin, W. Zhuang, Integral equations arising in the kinetic theory of gases, Appl. Anal., 34 (1989),261-266.
  • [9] C. A. Stuart, Existence theorems for a class of non-linear integral equations, Math. Z., 137 (1974) 49-66.
  • [10] J. Banas, A. Chlebowicz, On existence of integrable solutions of a functional integral equation under Carath´eodory conditions, Nonlinear Anal., 70 (2009), 3172-3179.
  • [11] J. Bana´s, B. Rzepka, On local attractivity and asymptotic stability of solutions of a quadratic Volterra integral equation, Appl. Math. Comput., 213 (2009), 102-111.
  • [12] H. Deepmala, K. Pathak, A study on some problems on existence of solutions for nonlinear functional-integral equations, Acta Math. Scientia, 33 (2013), 1305-1313.
  • [13] H. Deepmala, K. Pathak, Study on existence of solutions for some nonlinear functional-integral equations with applications, Math. Commun., 18 (2013), 97-107.
  • [14] K. Maleknejad, K. Nouri, R. Mollapourasl, Existence of solutions for some nonlinear integral equations, Communications in Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 2559-2564.
  • [15] K. Maleknejad, K. Nouri, R. Mollapourasl, Investigation on the existence of solutions for some nonlinear functional-integral equations, Nonlinear Anal., 71 (2009), 1575-1578.
  • [16] L. N. Mishra, R. P. Agarwal, M. Sen, Solvability and asymptotic behavior for some nonlinear quadratic integral equation involving Erd´elyi-Kober fractional integrals on the unbounded interval, Prog. Frac. Differ. Appli., 2 (3) (2016).
  • [17] L. N. Mishra, M. Sen, On the concept of existence and local attractivity of solutions for some quadratic Volterra integral equation of fractional order, Appl. Math. Comput., (2016), http://dx.doi.org/10.1016/j.amc.2016.03.002.
  • [18] L. Liu, F. Guo, C. Wu, Y. Wu, Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces, J. Math. Anal. Appl., 309 (2005), 638-649.
  • [19] J. Mallet-Paret, R.D. Nussbam, Inequivalent measures of noncompactness and the radius of the essential spectrum, Proc. Amer. Math. Soc., (2010), 917-930.
  • [20] G. Micula, G. Fairweather, Direct numerical spline methods for first order Fredholm integro-differential equations, Rev. Anal. Numer. Theory Approx., 22 (1) (1993), 59-66.
  • [21] M. Mursaleen, S.A. Mohiuddine, Applications of noncompactness to the infinite system of differential equations in `p spaces, Nonlinear Anal. Theory Methods Appl., 75 (4) (2012), 2111-2115.
  • [22] L. Olszowy, Solvability of infinite systems of singular integral equations in Fr´echet space of continuous functions, Comp. Math. Appl. 59 (2010), 2794-2801.
  • [23] M. J. Caballero, R.Nalepa, K. Sadarangani, Solvability of a quadratic integral equation of Fredholm type with Supremum in H¨older Spaces, J. Funct. Space Appl., (2014), 7 pages, doi:http://dx.doi.org/10.1155/2014/856183.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Merve TEMİZER ERSOY
Kahramanmaraş Sütçü Imam Üniversitesi, Matematik Bölümü
0000-0003-4364-9144
Türkiye

Publication Date March 29, 2021
Submission Date January 13, 2021
Acceptance Date March 10, 2021
Published in Issue Year 2021 Volume: 4 Issue: 1

Cite

Bibtex @research article { cams860254, journal = {Communications in Advanced Mathematical Sciences}, issn = {2651-4001}, address = {}, publisher = {Emrah Evren KARA}, year = {2021}, volume = {4}, number = {1}, pages = {39 - 45}, doi = {10.33434/cams.860254}, title = {Numerical Solution of a Quadratic Integral Equation through Classical Schauder Fixed Point Theorem}, key = {cite}, author = {Temizer Ersoy, Merve} }
APA Temizer Ersoy, M. (2021). Numerical Solution of a Quadratic Integral Equation through Classical Schauder Fixed Point Theorem . Communications in Advanced Mathematical Sciences , 4 (1) , 39-45 . DOI: 10.33434/cams.860254
MLA Temizer Ersoy, M. "Numerical Solution of a Quadratic Integral Equation through Classical Schauder Fixed Point Theorem" . Communications in Advanced Mathematical Sciences 4 (2021 ): 39-45 <https://dergipark.org.tr/en/pub/cams/issue/60931/860254>
Chicago Temizer Ersoy, M. "Numerical Solution of a Quadratic Integral Equation through Classical Schauder Fixed Point Theorem". Communications in Advanced Mathematical Sciences 4 (2021 ): 39-45
RIS TY - JOUR T1 - Numerical Solution of a Quadratic Integral Equation through Classical Schauder Fixed Point Theorem AU - MerveTemizer Ersoy Y1 - 2021 PY - 2021 N1 - doi: 10.33434/cams.860254 DO - 10.33434/cams.860254 T2 - Communications in Advanced Mathematical Sciences JF - Journal JO - JOR SP - 39 EP - 45 VL - 4 IS - 1 SN - 2651-4001- M3 - doi: 10.33434/cams.860254 UR - https://doi.org/10.33434/cams.860254 Y2 - 2021 ER -
EndNote %0 Communications in Advanced Mathematical Sciences Numerical Solution of a Quadratic Integral Equation through Classical Schauder Fixed Point Theorem %A Merve Temizer Ersoy %T Numerical Solution of a Quadratic Integral Equation through Classical Schauder Fixed Point Theorem %D 2021 %J Communications in Advanced Mathematical Sciences %P 2651-4001- %V 4 %N 1 %R doi: 10.33434/cams.860254 %U 10.33434/cams.860254
ISNAD Temizer Ersoy, Merve . "Numerical Solution of a Quadratic Integral Equation through Classical Schauder Fixed Point Theorem". Communications in Advanced Mathematical Sciences 4 / 1 (March 2021): 39-45 . https://doi.org/10.33434/cams.860254
AMA Temizer Ersoy M. Numerical Solution of a Quadratic Integral Equation through Classical Schauder Fixed Point Theorem. Communications in Advanced Mathematical Sciences. 2021; 4(1): 39-45.
Vancouver Temizer Ersoy M. Numerical Solution of a Quadratic Integral Equation through Classical Schauder Fixed Point Theorem. Communications in Advanced Mathematical Sciences. 2021; 4(1): 39-45.
IEEE M. Temizer Ersoy , "Numerical Solution of a Quadratic Integral Equation through Classical Schauder Fixed Point Theorem", Communications in Advanced Mathematical Sciences, vol. 4, no. 1, pp. 39-45, Mar. 2021, doi:10.33434/cams.860254
Creative Commons License
The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.