We define GBS operators of Durrmeyer operators for bivariate functions on simplex and we give their approximations and rate of their approximations for B-continuous and B-differentiable functions. We show that the GBS type the operators of new Durrmeyer have better approximation than the new operators.
[1] J. L. Durrmeyer, "une formule d′ inversion de la transformee de Laplace:Applicationsa la theorie de moments", these de′
3e cycle, Faculte des sciences de 1 universite de Paris,1967.
[2] M. M. Derriennic,Sur l′ approximation de fonctions integrables sur [0, 1] par de polynomes de Bernstein modifies, J.
Approx. Theory, 31(1981),325-343.
[3] S.P. Singh,On approximation Of Integrable Functions By Modified Bernstein Polynomials, Publications De L’Institut
Mathematicque, 41(55), (1987), 91-95.
[4] K. Bögel,Mehrdimensionale Differentitation von Funktionen mehrerer Veranderhicher, J. Reine agnew. Math., 170, (1934)
197-217.
[5] K. Bögel,Uber die mehrdimensionale Differentitation, Integration and beschra ̈nkte variation , J. Reine agnew. Math.,
(1935) 173, 5-29.
[6] K. Bögel,Uber die mehrdimensionale Differentitation, Jber. DMV, 65, (1962) 45-71.
[7] E. Dobrescu, I. Matei,Approximarea prin polinoame de tip Bernstein a functiilor bidimensional continue, Anal. Univ.
Timisoara , Seria Stiinte matematici-fizice, IV (1966), 85-90.
[8] C. Badea, I.Badea, H. H. Gonska,A test function theorem and approximation by pseudopolynomials, Bull. Austral. Math.
Soc.,34, (1986) 53-64.
[9] I. Badea, Modul de continuitate in sens Bo ̈gel s ̧i unele applicatii in approximarea printr-un operator Bernstein, Studia
Univ. ”Babes ̧-Bolyai” Ser. Math-Mech., 18(2), (1973)69-78, (Romanian).
[10] H. H. Gonska,Quantitative approximation in C(X), Habilitationsschrift, Universitaa ̈t Disburg, (1985).
[11] C. Badea, C. Cottin, Korovkin-type theorems for Generalized Boolean Sum operators, Colloquia Mathematica Sociekatis Janos Bolyai, 58, Approximation Theory , Kecskemet(Hungary), (1990) 51-68.
[12] V. Volkov, I.On the convergence of sequences of linear positive operators in the space of continuous functions of two variable, Math. Sb. N. S. 43(85) (1957) 504 (Russian).
[13] O. T. Pop,Approximation of B-differentiable functions by GBS operators, Analele Univ. Oradea. Fac. Mathematica, Tom. XIV, (2007) 15-31.
Year 2021,
Volume: 4 Issue: 2, 108 - 114, 30.06.2021
[1] J. L. Durrmeyer, "une formule d′ inversion de la transformee de Laplace:Applicationsa la theorie de moments", these de′
3e cycle, Faculte des sciences de 1 universite de Paris,1967.
[2] M. M. Derriennic,Sur l′ approximation de fonctions integrables sur [0, 1] par de polynomes de Bernstein modifies, J.
Approx. Theory, 31(1981),325-343.
[3] S.P. Singh,On approximation Of Integrable Functions By Modified Bernstein Polynomials, Publications De L’Institut
Mathematicque, 41(55), (1987), 91-95.
[4] K. Bögel,Mehrdimensionale Differentitation von Funktionen mehrerer Veranderhicher, J. Reine agnew. Math., 170, (1934)
197-217.
[5] K. Bögel,Uber die mehrdimensionale Differentitation, Integration and beschra ̈nkte variation , J. Reine agnew. Math.,
(1935) 173, 5-29.
[6] K. Bögel,Uber die mehrdimensionale Differentitation, Jber. DMV, 65, (1962) 45-71.
[7] E. Dobrescu, I. Matei,Approximarea prin polinoame de tip Bernstein a functiilor bidimensional continue, Anal. Univ.
Timisoara , Seria Stiinte matematici-fizice, IV (1966), 85-90.
[8] C. Badea, I.Badea, H. H. Gonska,A test function theorem and approximation by pseudopolynomials, Bull. Austral. Math.
Soc.,34, (1986) 53-64.
[9] I. Badea, Modul de continuitate in sens Bo ̈gel s ̧i unele applicatii in approximarea printr-un operator Bernstein, Studia
Univ. ”Babes ̧-Bolyai” Ser. Math-Mech., 18(2), (1973)69-78, (Romanian).
[10] H. H. Gonska,Quantitative approximation in C(X), Habilitationsschrift, Universitaa ̈t Disburg, (1985).
[11] C. Badea, C. Cottin, Korovkin-type theorems for Generalized Boolean Sum operators, Colloquia Mathematica Sociekatis Janos Bolyai, 58, Approximation Theory , Kecskemet(Hungary), (1990) 51-68.
[12] V. Volkov, I.On the convergence of sequences of linear positive operators in the space of continuous functions of two variable, Math. Sb. N. S. 43(85) (1957) 504 (Russian).
[13] O. T. Pop,Approximation of B-differentiable functions by GBS operators, Analele Univ. Oradea. Fac. Mathematica, Tom. XIV, (2007) 15-31.
Çiçek, H., İzgi, A., & Ayhan, M. (2021). GBS Operators of Bivariate Durrmeyer Operators on Simplex. Communications in Advanced Mathematical Sciences, 4(2), 108-114. https://doi.org/10.33434/cams.932416
AMA
Çiçek H, İzgi A, Ayhan M. GBS Operators of Bivariate Durrmeyer Operators on Simplex. Communications in Advanced Mathematical Sciences. June 2021;4(2):108-114. doi:10.33434/cams.932416
Chicago
Çiçek, Harun, Aydın İzgi, and Mehmet Ayhan. “GBS Operators of Bivariate Durrmeyer Operators on Simplex”. Communications in Advanced Mathematical Sciences 4, no. 2 (June 2021): 108-14. https://doi.org/10.33434/cams.932416.
EndNote
Çiçek H, İzgi A, Ayhan M (June 1, 2021) GBS Operators of Bivariate Durrmeyer Operators on Simplex. Communications in Advanced Mathematical Sciences 4 2 108–114.
IEEE
H. Çiçek, A. İzgi, and M. Ayhan, “GBS Operators of Bivariate Durrmeyer Operators on Simplex”, Communications in Advanced Mathematical Sciences, vol. 4, no. 2, pp. 108–114, 2021, doi: 10.33434/cams.932416.
ISNAD
Çiçek, Harun et al. “GBS Operators of Bivariate Durrmeyer Operators on Simplex”. Communications in Advanced Mathematical Sciences 4/2 (June 2021), 108-114. https://doi.org/10.33434/cams.932416.
JAMA
Çiçek H, İzgi A, Ayhan M. GBS Operators of Bivariate Durrmeyer Operators on Simplex. Communications in Advanced Mathematical Sciences. 2021;4:108–114.
MLA
Çiçek, Harun et al. “GBS Operators of Bivariate Durrmeyer Operators on Simplex”. Communications in Advanced Mathematical Sciences, vol. 4, no. 2, 2021, pp. 108-14, doi:10.33434/cams.932416.
Vancouver
Çiçek H, İzgi A, Ayhan M. GBS Operators of Bivariate Durrmeyer Operators on Simplex. Communications in Advanced Mathematical Sciences. 2021;4(2):108-14.