Research Article
PDF BibTex RIS Cite

Contact Hamiltonian Description of 1D Frictional Systems

Year 2021, Volume: 4 Issue: 2, 100 - 107, 30.06.2021
https://doi.org/10.33434/cams.937807

Abstract

In this paper, we consider contact Hamiltonian description of 1D frictional dynamics with no conserved force. Friction forces that are monomials of velocity, and sum of two monomials are considered. For that purpose, quite general forms of contact Hamiltonians are taken into account. We conjecture that it is impossible to give a contact Hamiltonian description dissipative systems where the friction force is not in the form considered in this paper.

Thanks

We would like to thank anonymous referees whose comments improved the paper.

References

  • [1] A. McInerney, A. First Steps in Differential Geometry. Springer, New York, 2013.
  • [2] S. Lie, Geometrie der Beru ̈hrungstransformationen (dargestellt von S. Lie und G. Scheffers), B. G. Teubner, Leipzig, 1896
  • [3] J.W. Gibbs, Part 1,”Graphical methods in the thermodynamics of fluids” and Part 2, ”A method of geometrical representation of the thermodynamic properties of substances by means of surfaces”, Trans. Connecticut Acad., Part 1,309–342 and Part 2,382–404, 1873.
  • [4] H. Geiges. Christiaan huygens and contact geometry, Nieuw Arch. Wiskd, 6(2) (2005), 117–123.
  • [5] H. Geiges. A brief history of contact geometry and topology, Expositiones Math., 19(1) (2001), 25–53.
  • [6] V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer, New York, 1989.
  • [7] A. Bravetti, H. Cruz, D. Tapias, Contact Hamiltonian mechanics, Ann. Phys., 376 (2017), 17–39.
  • [8] Q. Liu, P.J. Torres, C. Wang. Contact hamiltonian dynamics: Variational principles, invariants, completeness and periodic behavior, Ann. Phys., 395 (2018), 26–44.
  • [9] F.S. Dündar. Contact hamiltonian description of systems with exponentially decreasing force and friction that is quadratic in velocity, Fundam. J. Math. Appl., 3 (2020), 29–32.

Year 2021, Volume: 4 Issue: 2, 100 - 107, 30.06.2021
https://doi.org/10.33434/cams.937807

Abstract

References

  • [1] A. McInerney, A. First Steps in Differential Geometry. Springer, New York, 2013.
  • [2] S. Lie, Geometrie der Beru ̈hrungstransformationen (dargestellt von S. Lie und G. Scheffers), B. G. Teubner, Leipzig, 1896
  • [3] J.W. Gibbs, Part 1,”Graphical methods in the thermodynamics of fluids” and Part 2, ”A method of geometrical representation of the thermodynamic properties of substances by means of surfaces”, Trans. Connecticut Acad., Part 1,309–342 and Part 2,382–404, 1873.
  • [4] H. Geiges. Christiaan huygens and contact geometry, Nieuw Arch. Wiskd, 6(2) (2005), 117–123.
  • [5] H. Geiges. A brief history of contact geometry and topology, Expositiones Math., 19(1) (2001), 25–53.
  • [6] V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer, New York, 1989.
  • [7] A. Bravetti, H. Cruz, D. Tapias, Contact Hamiltonian mechanics, Ann. Phys., 376 (2017), 17–39.
  • [8] Q. Liu, P.J. Torres, C. Wang. Contact hamiltonian dynamics: Variational principles, invariants, completeness and periodic behavior, Ann. Phys., 395 (2018), 26–44.
  • [9] F.S. Dündar. Contact hamiltonian description of systems with exponentially decreasing force and friction that is quadratic in velocity, Fundam. J. Math. Appl., 3 (2020), 29–32.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Furkan Semih DÜNDAR
AMASYA UNIVERSITY
0000-0001-5184-5749
Türkiye


Gülhan AYAR
KARAMANOĞLU MEHMETBEY ÜNİVERSİTESİ, KAMİL ÖZDAĞ FEN FAKÜLTESİ
0000-0002-1018-4590
Türkiye

Publication Date June 30, 2021
Submission Date May 16, 2021
Acceptance Date June 9, 2021
Published in Issue Year 2021 Volume: 4 Issue: 2

Cite

Bibtex @research article { cams937807, journal = {Communications in Advanced Mathematical Sciences}, issn = {2651-4001}, address = {}, publisher = {Emrah Evren KARA}, year = {2021}, volume = {4}, number = {2}, pages = {100 - 107}, doi = {10.33434/cams.937807}, title = {Contact Hamiltonian Description of 1D Frictional Systems}, key = {cite}, author = {Dündar, Furkan Semih and Ayar, Gülhan} }
APA Dündar, F. S. & Ayar, G. (2021). Contact Hamiltonian Description of 1D Frictional Systems . Communications in Advanced Mathematical Sciences , 4 (2) , 100-107 . DOI: 10.33434/cams.937807
MLA Dündar, F. S. , Ayar, G. "Contact Hamiltonian Description of 1D Frictional Systems" . Communications in Advanced Mathematical Sciences 4 (2021 ): 100-107 <https://dergipark.org.tr/en/pub/cams/issue/63405/937807>
Chicago Dündar, F. S. , Ayar, G. "Contact Hamiltonian Description of 1D Frictional Systems". Communications in Advanced Mathematical Sciences 4 (2021 ): 100-107
RIS TY - JOUR T1 - Contact Hamiltonian Description of 1D Frictional Systems AU - Furkan SemihDündar, GülhanAyar Y1 - 2021 PY - 2021 N1 - doi: 10.33434/cams.937807 DO - 10.33434/cams.937807 T2 - Communications in Advanced Mathematical Sciences JF - Journal JO - JOR SP - 100 EP - 107 VL - 4 IS - 2 SN - 2651-4001- M3 - doi: 10.33434/cams.937807 UR - https://doi.org/10.33434/cams.937807 Y2 - 2021 ER -
EndNote %0 Communications in Advanced Mathematical Sciences Contact Hamiltonian Description of 1D Frictional Systems %A Furkan Semih Dündar , Gülhan Ayar %T Contact Hamiltonian Description of 1D Frictional Systems %D 2021 %J Communications in Advanced Mathematical Sciences %P 2651-4001- %V 4 %N 2 %R doi: 10.33434/cams.937807 %U 10.33434/cams.937807
ISNAD Dündar, Furkan Semih , Ayar, Gülhan . "Contact Hamiltonian Description of 1D Frictional Systems". Communications in Advanced Mathematical Sciences 4 / 2 (June 2021): 100-107 . https://doi.org/10.33434/cams.937807
AMA Dündar F. S. , Ayar G. Contact Hamiltonian Description of 1D Frictional Systems. Communications in Advanced Mathematical Sciences. 2021; 4(2): 100-107.
Vancouver Dündar F. S. , Ayar G. Contact Hamiltonian Description of 1D Frictional Systems. Communications in Advanced Mathematical Sciences. 2021; 4(2): 100-107.
IEEE F. S. Dündar and G. Ayar , "Contact Hamiltonian Description of 1D Frictional Systems", Communications in Advanced Mathematical Sciences, vol. 4, no. 2, pp. 100-107, Jun. 2021, doi:10.33434/cams.937807
Creative Commons License
The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.