Research Article
BibTex RIS Cite
Year 2023, Volume: 6 Issue: 1, 1 - 18, 31.03.2023
https://doi.org/10.33434/cams.1171482

Abstract

References

  • [1] C. Ji, D. Jiang,N. Shi, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation, J. Math. Anal. Appl., 359 (2009), 482-498.
  • [2] H. F. Hou, X. Wang, C. C. Chavez, Dynamics of a stage-structural Leslie-Gower predator-prey model, Math. Probs. in Engg., (2011)doi: 10.1155/2011/149341.
  • [3] Q. Yue, Dynamics of a modified Leslie-Gower predator-prey model with Holling type II schemes and a prey refuge, Springerplus, 5 (2011), 461.
  • [4] C. W. Clark, Mathematical Bioeconomics: The Optimal Management of Renewable Resources, Wiley-Interscience, New York, NY, USA, 1976.
  • [5] C. W. Clark, Bioeconomic Modeling and Fisheries Management, John Wiley and Sons, New York, NY, USA, 1985.
  • [6] D. Xiao, L. S. Jennings, Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting, SIAM J. Appl. Math., 65 (2005), 737-753.
  • [7] M. Xiao, J. Cao, Hopf bifurcation and non-hyperbolic equilibrium in a ratio-dependent predator-prey model with linear harvesting rate: analysis and computation, Mathematical Computer Modelling, 50 (2009), 360-379.
  • [8] R. P. Gupta, P. Chandra, Bifurcation analysis of modified Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting, J. Math. Anal. Appl., 398 (2013), 278-298.
  • [9] R. K. Upadhyay, P. Roy, J. Datta, Complex dynamics of ecological systems under nonlinear harvesting: Hopf bifurcation and Turing instability, Nonlinear Dynamics, 79 (2015), 2251-2270.
  • [10] T. Das, R. N. Mukherjee, K. S. Chaudhuri, Bioeconomic harvesting of a prey-predator fishery, J. Biol. Dyns., 3 (2009), 447-462.
  • [11] D. Hu, H. Cao, Stability and bifurcation analysis in a predator-prey system with Michaelis-Menten type predator harvesting, Nonlinear Analysis: RWA. 33 (2017), 58-82.
  • [12] T. K. Ang, H. M. Safuan, Dynamical behaviours and optimal harvesting of an intraguild prey-predator fishery model with Michaelis-Menten type predator harvesting, BioSystems, 202 (2021), 104357.
  • [13] H. N. Agiza, E. M. Elabbasy, EI-Metwally, A. A. Elasdany, Chaotic dynamics of a discrete predator-prey model with Holling type II, Nonlinear Anal. Real World Appl., 10 (2009), 116-129.
  • [14] Q. Din, Complexity and chaos control in a discrete time prey-predator model, Comm. Nonl. Sci. Num. Simul., 49 (2017), 113-134.
  • [15] M. E. Elettreby, T. Nabil, A. Khawagi, Stability and bifurcation analysis of a discrete predator-prey model with mixed Holling interaction, Computer Modeling in Engineering and Sciences, 122 (2020), 907-921.
  • [16] Z. M. He, X. Lai, Bifurcations and chaotic behaviour of a discrete-time predator-prey system, Nonlinear Anal. RWA., 12 (2011), 403-417.
  • [17] M. Zhao, Z. Xuan, C. Li, Dynamics of a discrete-time predator-prey system. Advances in Difference Equations, 2016 (2016), 191.
  • [18] Z. He, B. Li, Complex dynamic behavior of a discrete-time predator-prey system of Holling-III type. Advances in Difference Equations, 2014 (2014), 1-12.
  • [19] P. Santra, G. S. Mahapatra, G. Phaijoo, Bifurcation and chaos of a discrete predator-prey model with Crowley-Martin functional response incorporating proportional prey refuge. Math. Probl. Eng., 2020 (2020), 1-18.
  • [20] H. Seno, A discrete prey-predator model preserving the dynamics of a structurally unstable Lotka-Volterra model, J. Difference Eqns. and Appl., 13 (2007), 1155-1170.
  • [21] J. Chen, X. He, F. Chen, The influence of fear effect to a discrete-time predator-prey system with predator has other food resource. Mathematics, 9 (2021), 865. doi.org/10.3390/math9080865.
  • [22] M. B. Ajaz, U. Saeed, Q. Din,I. Ali, M. I. Siddiqui, Bifurcation analysis and chaos control in discrete-time modified LeslieGower prey harvesting model, Advances in Difference Equations, 2020 (2020) 45, doi.org/10.1186/s13662-020-2498-1.
  • [23] M. S. Khan, M. Abbas, E. Bonyah, H. Qi, Michaelis-Menten-Type prey harvesting in discrete modified Leslie-Gower predator-prey model, Journal of Function Spaces, 2022 (2022). doi.org/10.1155/2022/9575638.
  • [24] J. Chen, Z. Zhu, X. He, F. Chen, Bifurcation and chaos in a discrete predator-prey system of Leslie type with MichaelisMenten prey harvesting, Open Mathematics., 20 (2022), 1-21.
  • [25] X. Yang, Uniform persistence and periodic solutions for a discrete predator-prey system with delays, J. Math. Anal. Appl., 316 (2006), 161-177.
  • [26] E. A. Grove, G. Ladas, Periodicities in nonlinear difference equations, (Vol. 4). CRC Press, Boca Raton (2004).
  • [27] G. Y. Chen, Z. D. Teng, On the stability in a discrete two-species competition system, J. Appl. Math. Comput., 38 (2012), 25-39.
  • [28] L. Wang, M. Wang, Ordinary Difference Equations, XinJiang University Press, Urmuqi(1989).
  • [29] G. Wen, Criterion to identify Hopf bifurcations in maps of arbitrary dimension, Phys. Rev. E 72 (2005), 026201.
  • [30] X. S. Luo, G. Chen, B. H. Wang, J. Q. Fang, Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems, Chaos Solitons and Fractals, 18 (2003), 775-783.
  • [31] Q. Din, Bifurcation analysis and chaos control in discrete-time glycolysis models, J. Math. Chem., 56 (2018), 904-931.
  • [32] Q. Din, T. Donchev, D. Kolev, Stability, bifurcation analysis and chaos control in chlroine dioxide-iodine-malonic acid reaction, MATCH Commun. Math. Comput. Chem., 79 (2018), 577-606.
  • [33] Q. Din, U. Saeed, Bifurcation analysis and chaos control in a host-parasitoid model, Math. Methods Appl. Sci., 40 (2017), 5391-5406.

Global Stability and Bifurcation Analysis in a Discrete-Time Two Predator-One Prey Model with Michaelis-Menten Type Prey Harvesting

Year 2023, Volume: 6 Issue: 1, 1 - 18, 31.03.2023
https://doi.org/10.33434/cams.1171482

Abstract

This article studies a discrete-time Leslie-Gower two predator-one prey system with Michaelis-Menten type prey harvesting. Positivity and boundedness of the model solution are investigated. Existence and stability of fixed points are examined. Using an iteration scheme and the comparison principle of difference equations, we find out the sufficient condition for global stability of the positive fixed point. It is shown that the sufficient criterion for Neimark-Sacker bifurcation can be developed. It is observed that the system behaves in a chaotic manner when a specific set of system parameters is chosen, which are regulated by a hybrid control method. Examples are provided to illustrate our conclusions.

References

  • [1] C. Ji, D. Jiang,N. Shi, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation, J. Math. Anal. Appl., 359 (2009), 482-498.
  • [2] H. F. Hou, X. Wang, C. C. Chavez, Dynamics of a stage-structural Leslie-Gower predator-prey model, Math. Probs. in Engg., (2011)doi: 10.1155/2011/149341.
  • [3] Q. Yue, Dynamics of a modified Leslie-Gower predator-prey model with Holling type II schemes and a prey refuge, Springerplus, 5 (2011), 461.
  • [4] C. W. Clark, Mathematical Bioeconomics: The Optimal Management of Renewable Resources, Wiley-Interscience, New York, NY, USA, 1976.
  • [5] C. W. Clark, Bioeconomic Modeling and Fisheries Management, John Wiley and Sons, New York, NY, USA, 1985.
  • [6] D. Xiao, L. S. Jennings, Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting, SIAM J. Appl. Math., 65 (2005), 737-753.
  • [7] M. Xiao, J. Cao, Hopf bifurcation and non-hyperbolic equilibrium in a ratio-dependent predator-prey model with linear harvesting rate: analysis and computation, Mathematical Computer Modelling, 50 (2009), 360-379.
  • [8] R. P. Gupta, P. Chandra, Bifurcation analysis of modified Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting, J. Math. Anal. Appl., 398 (2013), 278-298.
  • [9] R. K. Upadhyay, P. Roy, J. Datta, Complex dynamics of ecological systems under nonlinear harvesting: Hopf bifurcation and Turing instability, Nonlinear Dynamics, 79 (2015), 2251-2270.
  • [10] T. Das, R. N. Mukherjee, K. S. Chaudhuri, Bioeconomic harvesting of a prey-predator fishery, J. Biol. Dyns., 3 (2009), 447-462.
  • [11] D. Hu, H. Cao, Stability and bifurcation analysis in a predator-prey system with Michaelis-Menten type predator harvesting, Nonlinear Analysis: RWA. 33 (2017), 58-82.
  • [12] T. K. Ang, H. M. Safuan, Dynamical behaviours and optimal harvesting of an intraguild prey-predator fishery model with Michaelis-Menten type predator harvesting, BioSystems, 202 (2021), 104357.
  • [13] H. N. Agiza, E. M. Elabbasy, EI-Metwally, A. A. Elasdany, Chaotic dynamics of a discrete predator-prey model with Holling type II, Nonlinear Anal. Real World Appl., 10 (2009), 116-129.
  • [14] Q. Din, Complexity and chaos control in a discrete time prey-predator model, Comm. Nonl. Sci. Num. Simul., 49 (2017), 113-134.
  • [15] M. E. Elettreby, T. Nabil, A. Khawagi, Stability and bifurcation analysis of a discrete predator-prey model with mixed Holling interaction, Computer Modeling in Engineering and Sciences, 122 (2020), 907-921.
  • [16] Z. M. He, X. Lai, Bifurcations and chaotic behaviour of a discrete-time predator-prey system, Nonlinear Anal. RWA., 12 (2011), 403-417.
  • [17] M. Zhao, Z. Xuan, C. Li, Dynamics of a discrete-time predator-prey system. Advances in Difference Equations, 2016 (2016), 191.
  • [18] Z. He, B. Li, Complex dynamic behavior of a discrete-time predator-prey system of Holling-III type. Advances in Difference Equations, 2014 (2014), 1-12.
  • [19] P. Santra, G. S. Mahapatra, G. Phaijoo, Bifurcation and chaos of a discrete predator-prey model with Crowley-Martin functional response incorporating proportional prey refuge. Math. Probl. Eng., 2020 (2020), 1-18.
  • [20] H. Seno, A discrete prey-predator model preserving the dynamics of a structurally unstable Lotka-Volterra model, J. Difference Eqns. and Appl., 13 (2007), 1155-1170.
  • [21] J. Chen, X. He, F. Chen, The influence of fear effect to a discrete-time predator-prey system with predator has other food resource. Mathematics, 9 (2021), 865. doi.org/10.3390/math9080865.
  • [22] M. B. Ajaz, U. Saeed, Q. Din,I. Ali, M. I. Siddiqui, Bifurcation analysis and chaos control in discrete-time modified LeslieGower prey harvesting model, Advances in Difference Equations, 2020 (2020) 45, doi.org/10.1186/s13662-020-2498-1.
  • [23] M. S. Khan, M. Abbas, E. Bonyah, H. Qi, Michaelis-Menten-Type prey harvesting in discrete modified Leslie-Gower predator-prey model, Journal of Function Spaces, 2022 (2022). doi.org/10.1155/2022/9575638.
  • [24] J. Chen, Z. Zhu, X. He, F. Chen, Bifurcation and chaos in a discrete predator-prey system of Leslie type with MichaelisMenten prey harvesting, Open Mathematics., 20 (2022), 1-21.
  • [25] X. Yang, Uniform persistence and periodic solutions for a discrete predator-prey system with delays, J. Math. Anal. Appl., 316 (2006), 161-177.
  • [26] E. A. Grove, G. Ladas, Periodicities in nonlinear difference equations, (Vol. 4). CRC Press, Boca Raton (2004).
  • [27] G. Y. Chen, Z. D. Teng, On the stability in a discrete two-species competition system, J. Appl. Math. Comput., 38 (2012), 25-39.
  • [28] L. Wang, M. Wang, Ordinary Difference Equations, XinJiang University Press, Urmuqi(1989).
  • [29] G. Wen, Criterion to identify Hopf bifurcations in maps of arbitrary dimension, Phys. Rev. E 72 (2005), 026201.
  • [30] X. S. Luo, G. Chen, B. H. Wang, J. Q. Fang, Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems, Chaos Solitons and Fractals, 18 (2003), 775-783.
  • [31] Q. Din, Bifurcation analysis and chaos control in discrete-time glycolysis models, J. Math. Chem., 56 (2018), 904-931.
  • [32] Q. Din, T. Donchev, D. Kolev, Stability, bifurcation analysis and chaos control in chlroine dioxide-iodine-malonic acid reaction, MATCH Commun. Math. Comput. Chem., 79 (2018), 577-606.
  • [33] Q. Din, U. Saeed, Bifurcation analysis and chaos control in a host-parasitoid model, Math. Methods Appl. Sci., 40 (2017), 5391-5406.
There are 33 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Debasis Mukherjee

Publication Date March 31, 2023
Submission Date September 6, 2022
Acceptance Date March 29, 2023
Published in Issue Year 2023 Volume: 6 Issue: 1

Cite

APA Mukherjee, D. (2023). Global Stability and Bifurcation Analysis in a Discrete-Time Two Predator-One Prey Model with Michaelis-Menten Type Prey Harvesting. Communications in Advanced Mathematical Sciences, 6(1), 1-18. https://doi.org/10.33434/cams.1171482
AMA Mukherjee D. Global Stability and Bifurcation Analysis in a Discrete-Time Two Predator-One Prey Model with Michaelis-Menten Type Prey Harvesting. Communications in Advanced Mathematical Sciences. March 2023;6(1):1-18. doi:10.33434/cams.1171482
Chicago Mukherjee, Debasis. “Global Stability and Bifurcation Analysis in a Discrete-Time Two Predator-One Prey Model With Michaelis-Menten Type Prey Harvesting”. Communications in Advanced Mathematical Sciences 6, no. 1 (March 2023): 1-18. https://doi.org/10.33434/cams.1171482.
EndNote Mukherjee D (March 1, 2023) Global Stability and Bifurcation Analysis in a Discrete-Time Two Predator-One Prey Model with Michaelis-Menten Type Prey Harvesting. Communications in Advanced Mathematical Sciences 6 1 1–18.
IEEE D. Mukherjee, “Global Stability and Bifurcation Analysis in a Discrete-Time Two Predator-One Prey Model with Michaelis-Menten Type Prey Harvesting”, Communications in Advanced Mathematical Sciences, vol. 6, no. 1, pp. 1–18, 2023, doi: 10.33434/cams.1171482.
ISNAD Mukherjee, Debasis. “Global Stability and Bifurcation Analysis in a Discrete-Time Two Predator-One Prey Model With Michaelis-Menten Type Prey Harvesting”. Communications in Advanced Mathematical Sciences 6/1 (March 2023), 1-18. https://doi.org/10.33434/cams.1171482.
JAMA Mukherjee D. Global Stability and Bifurcation Analysis in a Discrete-Time Two Predator-One Prey Model with Michaelis-Menten Type Prey Harvesting. Communications in Advanced Mathematical Sciences. 2023;6:1–18.
MLA Mukherjee, Debasis. “Global Stability and Bifurcation Analysis in a Discrete-Time Two Predator-One Prey Model With Michaelis-Menten Type Prey Harvesting”. Communications in Advanced Mathematical Sciences, vol. 6, no. 1, 2023, pp. 1-18, doi:10.33434/cams.1171482.
Vancouver Mukherjee D. Global Stability and Bifurcation Analysis in a Discrete-Time Two Predator-One Prey Model with Michaelis-Menten Type Prey Harvesting. Communications in Advanced Mathematical Sciences. 2023;6(1):1-18.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..