Research Article
BibTex RIS Cite

Tensorial and Hadamard Product Inequalities for Synchronous Functions

Year 2023, Volume: 6 Issue: 4, 177 - 187, 25.12.2023
https://doi.org/10.33434/cams.1362694

Abstract

Let $H$ be a Hilbert space. In this paper we show among others that, if $f,$ $g$ are synchronous and continuous on $I$ and $A,$ $B$ are selfadjoint with spectra ${Sp}\left( A\right) ,$ ${Sp}\left( B\right) \subset I,$ then%
\begin{equation*}
\left( f\left( A\right) g\left( A\right) \right) \otimes 1+1\otimes \left(
f\left( B\right) g\left( B\right) \right) \geq f\left( A\right) \otimes
g\left( B\right) +g\left( A\right) \otimes f\left( B\right)
\end{equation*}%
and the inequality for Hadamard product%
\begin{equation*}
\left( f\left( A\right) g\left( A\right) +f\left( B\right) g\left( B\right)
\right) \circ 1\geq f\left( A\right) \circ g\left( B\right) +f\left(
B\right) \circ g\left( A\right) .
\end{equation*}%
Let either $p,q\in \left( 0,\infty \right) $ or $p,q\in \left( -\infty
,0\right) $. If $A,$ $B>0,$ then
\begin{equation*}
A^{p+q}\otimes 1+1\otimes B^{p+q}\geq A^{p}\otimes B^{q}+A^{q}\otimes B^{p},
\end{equation*}%
and%
\begin{equation*}
\left( A^{p+q}+B^{p+q}\right) \circ 1\geq A^{p}\circ B^{q}+A^{q}\circ B^{p}.
\end{equation*}

References

  • [1] H. Araki, F. Hansen, Jensen’s operator inequality for functions of several variables, Proc. Amer. Math. Soc., 128 (7) (2000), 2075-2084.
  • [2] A. Koranyi, On some classes of analytic functions of several variables, Trans. Amer. Math. Soc., 101 (1961), 520-554.
  • [3] T. Furuta, J. Micic Hot, J. Pecaric, Y. Seo, Mond-Peˇcari´c Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
  • [4] S. Wada, On some refinement of the Cauchy-Schwarz inequality, Lin. Alg. & Appl., 420 (2007), 433-440.
  • [5] J. I. Fujii, The Marcus-Khan theorem for Hilbert space operators, Math. Jpn., 41 (1995), 531-535.
  • [6] T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Lin. Alg. & Appl., 26 (1979), 203-241.
  • [7] J. S. Aujila, H. L. Vasudeva, Inequalities involving Hadamard product and operator means, Math. Japon., 42 (1995), 265-272.
  • [8] K. Kitamura, Y. Seo, Operator inequalities on Hadamard product associated with Kadison’s Schwarz inequalities, Scient. Math. 1(2) (1998), 237-241.
  • [9] P. Bhunia, K. Paul, A. Sen, Numerical radius inequalities for tensor product of operators, Proc. Indian Acad. Sci. (Math. Sci.), 133(3) (2023).
  • [10] H. L. Gau, K. Z. Wang, P. Y. Wu, Numerical radii for tensor products of operators, Integr. Equ. Oper. Theory, 78 (2014), 375–382.
Year 2023, Volume: 6 Issue: 4, 177 - 187, 25.12.2023
https://doi.org/10.33434/cams.1362694

Abstract

References

  • [1] H. Araki, F. Hansen, Jensen’s operator inequality for functions of several variables, Proc. Amer. Math. Soc., 128 (7) (2000), 2075-2084.
  • [2] A. Koranyi, On some classes of analytic functions of several variables, Trans. Amer. Math. Soc., 101 (1961), 520-554.
  • [3] T. Furuta, J. Micic Hot, J. Pecaric, Y. Seo, Mond-Peˇcari´c Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
  • [4] S. Wada, On some refinement of the Cauchy-Schwarz inequality, Lin. Alg. & Appl., 420 (2007), 433-440.
  • [5] J. I. Fujii, The Marcus-Khan theorem for Hilbert space operators, Math. Jpn., 41 (1995), 531-535.
  • [6] T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Lin. Alg. & Appl., 26 (1979), 203-241.
  • [7] J. S. Aujila, H. L. Vasudeva, Inequalities involving Hadamard product and operator means, Math. Japon., 42 (1995), 265-272.
  • [8] K. Kitamura, Y. Seo, Operator inequalities on Hadamard product associated with Kadison’s Schwarz inequalities, Scient. Math. 1(2) (1998), 237-241.
  • [9] P. Bhunia, K. Paul, A. Sen, Numerical radius inequalities for tensor product of operators, Proc. Indian Acad. Sci. (Math. Sci.), 133(3) (2023).
  • [10] H. L. Gau, K. Z. Wang, P. Y. Wu, Numerical radii for tensor products of operators, Integr. Equ. Oper. Theory, 78 (2014), 375–382.
There are 10 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Articles
Authors

Sever Dragomır 0000-0003-2902-6805

Early Pub Date November 7, 2023
Publication Date December 25, 2023
Submission Date September 19, 2023
Acceptance Date October 31, 2023
Published in Issue Year 2023 Volume: 6 Issue: 4

Cite

APA Dragomır, S. (2023). Tensorial and Hadamard Product Inequalities for Synchronous Functions. Communications in Advanced Mathematical Sciences, 6(4), 177-187. https://doi.org/10.33434/cams.1362694
AMA Dragomır S. Tensorial and Hadamard Product Inequalities for Synchronous Functions. Communications in Advanced Mathematical Sciences. December 2023;6(4):177-187. doi:10.33434/cams.1362694
Chicago Dragomır, Sever. “Tensorial and Hadamard Product Inequalities for Synchronous Functions”. Communications in Advanced Mathematical Sciences 6, no. 4 (December 2023): 177-87. https://doi.org/10.33434/cams.1362694.
EndNote Dragomır S (December 1, 2023) Tensorial and Hadamard Product Inequalities for Synchronous Functions. Communications in Advanced Mathematical Sciences 6 4 177–187.
IEEE S. Dragomır, “Tensorial and Hadamard Product Inequalities for Synchronous Functions”, Communications in Advanced Mathematical Sciences, vol. 6, no. 4, pp. 177–187, 2023, doi: 10.33434/cams.1362694.
ISNAD Dragomır, Sever. “Tensorial and Hadamard Product Inequalities for Synchronous Functions”. Communications in Advanced Mathematical Sciences 6/4 (December 2023), 177-187. https://doi.org/10.33434/cams.1362694.
JAMA Dragomır S. Tensorial and Hadamard Product Inequalities for Synchronous Functions. Communications in Advanced Mathematical Sciences. 2023;6:177–187.
MLA Dragomır, Sever. “Tensorial and Hadamard Product Inequalities for Synchronous Functions”. Communications in Advanced Mathematical Sciences, vol. 6, no. 4, 2023, pp. 177-8, doi:10.33434/cams.1362694.
Vancouver Dragomır S. Tensorial and Hadamard Product Inequalities for Synchronous Functions. Communications in Advanced Mathematical Sciences. 2023;6(4):177-8.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..