Research Article
BibTex RIS Cite
Year 2023, Volume: 6 Issue: 4, 226 - 239, 25.12.2023
https://doi.org/10.33434/cams.1372245

Abstract

References

  • [1] W. R. Hamilton, Lectures on Quaternions, Hodges and Smith. Dublin, 1853.
  • [2] J. Cockle, On certain functions resembling quaternions and on a new imaginary in algebra., The London, Edinburg and Dublin Philosophical Mag. J. Sci., 33 (1848), 435-439.
  • [3] C. Segre, Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici., Math. Ann., 40 (1892), 413-467.
  • [4] F. Catoni, D. Boccaletti, C. V. Cannata, Catoni, E. Nichelatti, F. Zampetti, The Mathematics of Minkowski Space-Time with an Introduction to Commutative Hypercomplex Numbers, Basel, Boston, Berlin: Birkhauser Verlag, 2008.
  • [5] G. B. Price, An Introduction to Multicomplex Spaces and Functions, M. Dekker New York, 1991.
  • [6] A. A. Pogorui, R. M. Rodrigez-Dagnino, R. D. Rodrigez-Said, On the set of zeros of bihyperbolic polynomials., Complex Var. Elliptic Equ., 53, (2008), 685-690.
  • [7] S. Olariu, Complex Number in n-dimensions, Nerth-Holland Mathematics Studies, 190, Amsterdam, Boston: Elsevier, 51-148, 2002.
  • [8] M. Bilgin, S. Ersoy, Algebraic properties of bihyperbolic numbers., Adv. Appl. Clifford Algebr., 30 (2020), 1-17.
  • [9] N. Gürses, G. Y. Sentürk, S. Yüce, A study on dual-generalized complex and hyperbolic-generalized complex numbers., Gazi Univ. J. Sci., 34 (2021), 180-194.
  • [10] D. Brod, A. Syznal-Liana, I. Wloch, On some combinatorial properties of bihyperbolic numbers of the Fibonacci type., Math. Meth. App. Sci., 44 (2021), 4607-4615.
  • [11] D. Brod, A. Syznal-Liana, I. Wloch, On a new generalization of bihyperbolic Pell numbers., Ann. Alexandru Ioan Cuza Univ. Math., 67(2) (2021).
  • [12] A. Z. Azak, Some new identities with respect to bihyperbolic Fibonacci and Lucas numbers., Int. J. Sci.: Basic and App. Res., 60 (2021), 14-37.
  • [13] A. Szynal-Liana, I. Włoch, On Jacobsthal and Jacobsthal-Lucas hybrid numbers., Ann. Math. Sil., 33 (2019), 276-283.
  • [14] A. F. Horadam, Jacobsthal representation numbers., Fibonacci Quart., 34 (1996), 40-54.
  • [15] A. F. Horadam, Jacobsthal representation polynomials., Fibonacci Quart., 35 (1997), 137-148.
  • [16] F. T. Aydın, On generalizations of the Jacobsthal sequence., Notes Number Theory Discrete Math., 24(1) (2018), 120-135.
  • [17] S. Uygun, A new generalization for Jacobsthal and Jacobsthal-Lucas sequences., Asian J. Math., 2(1) (2018), 14-21.
  • [18] A. Al-Kateeb, A generalization of Jacobsthal and Jacobsthal-Lucas numbers., (2019), arXiv preprint:1911.11515.
  • [19] D. Brod, A. Michalski, On generalized Jacobsthal and Jacobsthal-Lucas numbers., Ann. Math. Sil., 36(2) (2022), 115-128.
  • [20] A.F. Horadam, Pell identities., Fibonacci Quart., 9(3) (1971), 245-252.
  • [21] A. F. Horadam, J. Mahon, Pell and Pell-Lucas polynomials., Fibonacci Quart., 23(1) (1985), 7-20.
  • [22] S. F. Santana, et al, Some properties of sums involving Pell numbers, Missouri J. Math. Sci. Uni. Central Missouri, Department of Mathematics and Computer Science, 18(1) (2006), 33-40.
  • [23] A. Szynal-Liana, I. Włoch, On certain bihypernomials related to Pell and Pell-Lucas numbers., Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 71(2) (2022), 422-433.
  • [24] H. Gökbaş, Gaussian-bihyperbolic numbers containing Pell and Pell-Lucas numbers., J. Adv. Res. Nat. App. Sci., Çanakkale Onsekiz Mart Univ. 9(1) (2023), 183-189.
  • [25] F. T. Aydın, On bicomplex Pell and Pell-Lucas numbers., Comm. Adv. Math. Sci., 1(2) (2018), 142-155.

On Some Properties of Bihyperbolic Numbers of The Lucas Type

Year 2023, Volume: 6 Issue: 4, 226 - 239, 25.12.2023
https://doi.org/10.33434/cams.1372245

Abstract

To date, many authors in the literature have worked on special arrays in various computational systems. In this article, Lucas type bihyperbolic numbers were defined and their algebraic properties were examined. Bihyperbolic Lucas numbers were studied by Azak in 2021. Therefore, we only examined bihyperbolic Jacobsthal-Lucas and Pell-Lucas numbers. We also gave properties of bihyperbolic Jacobstal-Lucas and bihyperbolic Pell-Lucas numbers such as recursion relation, derivation function, Binet formula, D'Ocagne identity, Cassini identity and Catalan identity.

References

  • [1] W. R. Hamilton, Lectures on Quaternions, Hodges and Smith. Dublin, 1853.
  • [2] J. Cockle, On certain functions resembling quaternions and on a new imaginary in algebra., The London, Edinburg and Dublin Philosophical Mag. J. Sci., 33 (1848), 435-439.
  • [3] C. Segre, Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici., Math. Ann., 40 (1892), 413-467.
  • [4] F. Catoni, D. Boccaletti, C. V. Cannata, Catoni, E. Nichelatti, F. Zampetti, The Mathematics of Minkowski Space-Time with an Introduction to Commutative Hypercomplex Numbers, Basel, Boston, Berlin: Birkhauser Verlag, 2008.
  • [5] G. B. Price, An Introduction to Multicomplex Spaces and Functions, M. Dekker New York, 1991.
  • [6] A. A. Pogorui, R. M. Rodrigez-Dagnino, R. D. Rodrigez-Said, On the set of zeros of bihyperbolic polynomials., Complex Var. Elliptic Equ., 53, (2008), 685-690.
  • [7] S. Olariu, Complex Number in n-dimensions, Nerth-Holland Mathematics Studies, 190, Amsterdam, Boston: Elsevier, 51-148, 2002.
  • [8] M. Bilgin, S. Ersoy, Algebraic properties of bihyperbolic numbers., Adv. Appl. Clifford Algebr., 30 (2020), 1-17.
  • [9] N. Gürses, G. Y. Sentürk, S. Yüce, A study on dual-generalized complex and hyperbolic-generalized complex numbers., Gazi Univ. J. Sci., 34 (2021), 180-194.
  • [10] D. Brod, A. Syznal-Liana, I. Wloch, On some combinatorial properties of bihyperbolic numbers of the Fibonacci type., Math. Meth. App. Sci., 44 (2021), 4607-4615.
  • [11] D. Brod, A. Syznal-Liana, I. Wloch, On a new generalization of bihyperbolic Pell numbers., Ann. Alexandru Ioan Cuza Univ. Math., 67(2) (2021).
  • [12] A. Z. Azak, Some new identities with respect to bihyperbolic Fibonacci and Lucas numbers., Int. J. Sci.: Basic and App. Res., 60 (2021), 14-37.
  • [13] A. Szynal-Liana, I. Włoch, On Jacobsthal and Jacobsthal-Lucas hybrid numbers., Ann. Math. Sil., 33 (2019), 276-283.
  • [14] A. F. Horadam, Jacobsthal representation numbers., Fibonacci Quart., 34 (1996), 40-54.
  • [15] A. F. Horadam, Jacobsthal representation polynomials., Fibonacci Quart., 35 (1997), 137-148.
  • [16] F. T. Aydın, On generalizations of the Jacobsthal sequence., Notes Number Theory Discrete Math., 24(1) (2018), 120-135.
  • [17] S. Uygun, A new generalization for Jacobsthal and Jacobsthal-Lucas sequences., Asian J. Math., 2(1) (2018), 14-21.
  • [18] A. Al-Kateeb, A generalization of Jacobsthal and Jacobsthal-Lucas numbers., (2019), arXiv preprint:1911.11515.
  • [19] D. Brod, A. Michalski, On generalized Jacobsthal and Jacobsthal-Lucas numbers., Ann. Math. Sil., 36(2) (2022), 115-128.
  • [20] A.F. Horadam, Pell identities., Fibonacci Quart., 9(3) (1971), 245-252.
  • [21] A. F. Horadam, J. Mahon, Pell and Pell-Lucas polynomials., Fibonacci Quart., 23(1) (1985), 7-20.
  • [22] S. F. Santana, et al, Some properties of sums involving Pell numbers, Missouri J. Math. Sci. Uni. Central Missouri, Department of Mathematics and Computer Science, 18(1) (2006), 33-40.
  • [23] A. Szynal-Liana, I. Włoch, On certain bihypernomials related to Pell and Pell-Lucas numbers., Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 71(2) (2022), 422-433.
  • [24] H. Gökbaş, Gaussian-bihyperbolic numbers containing Pell and Pell-Lucas numbers., J. Adv. Res. Nat. App. Sci., Çanakkale Onsekiz Mart Univ. 9(1) (2023), 183-189.
  • [25] F. T. Aydın, On bicomplex Pell and Pell-Lucas numbers., Comm. Adv. Math. Sci., 1(2) (2018), 142-155.
There are 25 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Articles
Authors

Fügen Torunbalcı Aydın 0000-0001-9292-1832

Early Pub Date December 25, 2023
Publication Date December 25, 2023
Submission Date October 6, 2023
Acceptance Date December 22, 2023
Published in Issue Year 2023 Volume: 6 Issue: 4

Cite

APA Torunbalcı Aydın, F. (2023). On Some Properties of Bihyperbolic Numbers of The Lucas Type. Communications in Advanced Mathematical Sciences, 6(4), 226-239. https://doi.org/10.33434/cams.1372245
AMA Torunbalcı Aydın F. On Some Properties of Bihyperbolic Numbers of The Lucas Type. Communications in Advanced Mathematical Sciences. December 2023;6(4):226-239. doi:10.33434/cams.1372245
Chicago Torunbalcı Aydın, Fügen. “On Some Properties of Bihyperbolic Numbers of The Lucas Type”. Communications in Advanced Mathematical Sciences 6, no. 4 (December 2023): 226-39. https://doi.org/10.33434/cams.1372245.
EndNote Torunbalcı Aydın F (December 1, 2023) On Some Properties of Bihyperbolic Numbers of The Lucas Type. Communications in Advanced Mathematical Sciences 6 4 226–239.
IEEE F. Torunbalcı Aydın, “On Some Properties of Bihyperbolic Numbers of The Lucas Type”, Communications in Advanced Mathematical Sciences, vol. 6, no. 4, pp. 226–239, 2023, doi: 10.33434/cams.1372245.
ISNAD Torunbalcı Aydın, Fügen. “On Some Properties of Bihyperbolic Numbers of The Lucas Type”. Communications in Advanced Mathematical Sciences 6/4 (December 2023), 226-239. https://doi.org/10.33434/cams.1372245.
JAMA Torunbalcı Aydın F. On Some Properties of Bihyperbolic Numbers of The Lucas Type. Communications in Advanced Mathematical Sciences. 2023;6:226–239.
MLA Torunbalcı Aydın, Fügen. “On Some Properties of Bihyperbolic Numbers of The Lucas Type”. Communications in Advanced Mathematical Sciences, vol. 6, no. 4, 2023, pp. 226-39, doi:10.33434/cams.1372245.
Vancouver Torunbalcı Aydın F. On Some Properties of Bihyperbolic Numbers of The Lucas Type. Communications in Advanced Mathematical Sciences. 2023;6(4):226-39.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..