Research Article
BibTex RIS Cite

Mersenne Matrix Operator and Its Application in $p-$Summable Sequence Space

Year 2024, Volume: 7 Issue: 1, 42 - 55, 04.03.2024
https://doi.org/10.33434/cams.1414791

Abstract

In this study, it is introduced the regular Mersenne matrix operator which is obtained by using Mersenne numbers and examined sequence spaces described as the domain of this matrix in the space of $p$-summable sequences for $1\leq p \leq \infty$. After that, it investigated some properties and inclusion relations, established the Schauder basis, and stated $\alpha-$, $\beta-$, and $\gamma-$duals of the aforementioned spaces. Additionally, it is characterized by the matrix classes from newly described spaces to classical sequence spaces. Finally, we studied the compactness of matrix operators on related sequence spaces.

References

  • [1] B. Altay, F. Başar, Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space, J. Math. Anal. Appl., 336 (2007), 632-645.
  • [2] T. Yaying, B. Hazarika, M. İlkhan, M.Mursaleen, Poisson like matrix operator and its application in p􀀀summable space, Math. Slovaca, 71(5) (2021), 1189-1210.
  • [3] T. Yaying, On L-Fibonacci difference sequence spaces of fractional order, Dera Natung Government College Research Journal, 6(1) (2021), 92-102. https://doi.org/10.56405/dngcrj.2021.06.01.10
  • [4] M. Karakaş, M.C. Dağlı, A new paranormed sequence space defined by regular Bell matrix, Dera Natung Government College Research Journal, 8(1) (2023), 30-45. https://doi.org/10.56405/dngcrj.2023.08.01.03
  • [5] O. Tuğ, E. Malkowsky, B. Hazarika, T. Yaying, On the new generalized Hahn sequence space $h_d^p$, Abstr. Appl. Anal., vol. 2022, Article ID 6832559, 11 pages, 2022. https://doi.org/10.1155/2022/6832559
  • [6] M. Candan, E. E. Kara, A study on topological and geometrical characteristics of a new Banach sequence spaces, Gulf. J. Math., 3(4) (2015), 67-84.
  • [7] M. Candan, Some Characteristics of matrix operators on generalized Fibonacci weighted difference sequence space, Symmetry, 14(7), 2022.
  • [8] S. Erdem, S. Demiriz, On the new generalized block difference sequence space, Appl. Appl. Math.(AAM), Special Issue 5 (2019), 68-83.
  • [9] H. B. Ellidokuzoğlu, S. Demiriz, On some generalized q-difference sequence spaces, AIMS Mathematics, 8(8) (2023), 18607-18617.
  • [10] M. İlkhan, P. Z. Alp, E. E. Kara, On the spaces of linear operators acting between asymmetric cone normed spaces, Mediterr. J. Math., 15, 136 (2018).
  • [11] F. Başar, Summability Theory and Its Applications, Istanbul, 2012.
  • [12] J. Boos, Classical and Modern Methods in Summability, Oxford Science Publications, Oxford University Press, 2000.
  • [13] M. Mursaleen, F. Başar, Sequence Spaces: Topic in Modern Summability, CRC Press, Taylor Frencis Group, Series: Mathematics and its applications, Boca Raton, London, New York, 2020.
  • [14] E. E. Kara, M. Başarır, An application of Fibonacci numbers into infinite Toeplitz matrices, Casp. J. Math. Sci., 1(1) (2012), 43-47.
  • [15] M. C. Dağlı, A novel conservative matrix arising from Schr¨oder numbers and its properties, Linear and Multilinear Algebra, 71(8) (2023), 1338-1351. DOI: 10.1080/03081087.2022.2061401.
  • [16] M. C. Dağlı, Matrix mappings and compact operators for Schr¨oder sequence spaces, Turkish J. Math., 46 (2022), 2304-2320.
  • [17] M. Karakaş, M. C. Dağlı, Some topologic and geometric properties of new Catalan sequence spaces, Adv. Oper. Theory, 8(14) (2023), 15 pages.
  • [18] E. E. Kara, Some topological and geometrical properties of new Banach sequence spaces, J. Inequal. Appl., 2013, 2013:38.
  • [19] M. Karakaş, H. Karabudak, An application on the Lucas numbers and infinite Toeplitz matrices, Cumhuriyet Sci. J., 38(3) (2017), 557-562.
  • [20] M. Karakasş A. M. Karakaş, New Banach sequence spaces that is defined by the aid of Lucas numbers, Iğdır Univ. J. Inst. Sci. Tech., 7(4) (2017), 103-111.
  • [21] T. Yaying, B. Hazarika, S. A. Mohiuddine, Domain of Padovan q-difference matrix in sequence spaces $\ell_p$ and $\ell_\infty$, Filomat, 36(3) (2022), 905-919.
  • [22] T. Yaying, B. Hazarika, O. M. Kalthum S. K. Mohamed, Awad A. Bakery, On new Banach sequence spaces involving Leonardo numbers and the associated mapping ideal, J. Funct. Spaces, 2022, Article ID: 8269000, 21 Pages.
  • [23] M. İlkhan, A new conservative matrix derived by Catalan numbers and its matrix domain in the spaces c and c0, Linear and Multilinear Algebra, https://doi.org/10.1080/03081087.2019.1635071
  • [24] M.İlkhan, E. E. Kara, Matrix transformations and compact operators on Catalan sequence spaces, J. Math. Anal. Appl., 498 (2021), 124925.
  • [25] M. Karakaş, On the sequence spaces involving Bell numbers, Linear and Multilinear Algebra, https://doi.org/10.1080/03081087.2022.2098225
  • [26] A. Wilansky, Summability Through Functional Analysis. Amsterdam-New York-Oxford: North- Holland Mathematics Studies 85; 1984.
  • [27] M. Stieglitz, H. Tietz, Matrix transformationen von folgenraumen eine ergebnisbersicht, Math Z., 154 (1977), 1-16.
  • [28] E. Malkowsky, V. Rakocevic, An introduction into the theory of sequence spaces and measure of noncompactness, Zbornik Radova, Matematicki Inst SANU, Belgrad, 9(17) (2000), 143-234.
  • [29] V. Rakocevic, Measures of noncompactness and some applications, Filomat, 12 (1998), 87-120.
  • [30] M. Mursaleen, AK. Noman, Compactness by the Hausdorff measure of noncompactness, Nonlinear Anal., 73(8) (2010), 2541-2557.
  • [31] M. Mursaleen, AK. Noman, Applications of the Hausdorffmeasure of noncompactness in some sequence spaces of weighted means, Comput Math Appl. 2010;60(5) (2010), 1245-1258.
  • [32] F. Bas¸ar, E. Malkowsky, The characterization of compact operators on spaces of strongly summable and bounded sequences, Appl Math Comput., 217 (2011), 5199-5207.
  • [33] E.E. Kara, M. Başarır, On compact operators and some Euler B(m) difference sequence spaces and compact operators, J. Math. Anal. Appl., 379 (2011), 499-511.
  • [34] M. Başarır, E. E. Kara, On some difference sequence spaces of weighted means and compact operators, Ann. Funct. Anal., 2 (2011), 114-129.
  • [35] M. Başarır, E. E. Kara, On the B-difference sequence space derived by generalized weighted mean and compact operators, J. Math. Anal. Appl., 391 (2012), 67-81.
Year 2024, Volume: 7 Issue: 1, 42 - 55, 04.03.2024
https://doi.org/10.33434/cams.1414791

Abstract

References

  • [1] B. Altay, F. Başar, Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space, J. Math. Anal. Appl., 336 (2007), 632-645.
  • [2] T. Yaying, B. Hazarika, M. İlkhan, M.Mursaleen, Poisson like matrix operator and its application in p􀀀summable space, Math. Slovaca, 71(5) (2021), 1189-1210.
  • [3] T. Yaying, On L-Fibonacci difference sequence spaces of fractional order, Dera Natung Government College Research Journal, 6(1) (2021), 92-102. https://doi.org/10.56405/dngcrj.2021.06.01.10
  • [4] M. Karakaş, M.C. Dağlı, A new paranormed sequence space defined by regular Bell matrix, Dera Natung Government College Research Journal, 8(1) (2023), 30-45. https://doi.org/10.56405/dngcrj.2023.08.01.03
  • [5] O. Tuğ, E. Malkowsky, B. Hazarika, T. Yaying, On the new generalized Hahn sequence space $h_d^p$, Abstr. Appl. Anal., vol. 2022, Article ID 6832559, 11 pages, 2022. https://doi.org/10.1155/2022/6832559
  • [6] M. Candan, E. E. Kara, A study on topological and geometrical characteristics of a new Banach sequence spaces, Gulf. J. Math., 3(4) (2015), 67-84.
  • [7] M. Candan, Some Characteristics of matrix operators on generalized Fibonacci weighted difference sequence space, Symmetry, 14(7), 2022.
  • [8] S. Erdem, S. Demiriz, On the new generalized block difference sequence space, Appl. Appl. Math.(AAM), Special Issue 5 (2019), 68-83.
  • [9] H. B. Ellidokuzoğlu, S. Demiriz, On some generalized q-difference sequence spaces, AIMS Mathematics, 8(8) (2023), 18607-18617.
  • [10] M. İlkhan, P. Z. Alp, E. E. Kara, On the spaces of linear operators acting between asymmetric cone normed spaces, Mediterr. J. Math., 15, 136 (2018).
  • [11] F. Başar, Summability Theory and Its Applications, Istanbul, 2012.
  • [12] J. Boos, Classical and Modern Methods in Summability, Oxford Science Publications, Oxford University Press, 2000.
  • [13] M. Mursaleen, F. Başar, Sequence Spaces: Topic in Modern Summability, CRC Press, Taylor Frencis Group, Series: Mathematics and its applications, Boca Raton, London, New York, 2020.
  • [14] E. E. Kara, M. Başarır, An application of Fibonacci numbers into infinite Toeplitz matrices, Casp. J. Math. Sci., 1(1) (2012), 43-47.
  • [15] M. C. Dağlı, A novel conservative matrix arising from Schr¨oder numbers and its properties, Linear and Multilinear Algebra, 71(8) (2023), 1338-1351. DOI: 10.1080/03081087.2022.2061401.
  • [16] M. C. Dağlı, Matrix mappings and compact operators for Schr¨oder sequence spaces, Turkish J. Math., 46 (2022), 2304-2320.
  • [17] M. Karakaş, M. C. Dağlı, Some topologic and geometric properties of new Catalan sequence spaces, Adv. Oper. Theory, 8(14) (2023), 15 pages.
  • [18] E. E. Kara, Some topological and geometrical properties of new Banach sequence spaces, J. Inequal. Appl., 2013, 2013:38.
  • [19] M. Karakaş, H. Karabudak, An application on the Lucas numbers and infinite Toeplitz matrices, Cumhuriyet Sci. J., 38(3) (2017), 557-562.
  • [20] M. Karakasş A. M. Karakaş, New Banach sequence spaces that is defined by the aid of Lucas numbers, Iğdır Univ. J. Inst. Sci. Tech., 7(4) (2017), 103-111.
  • [21] T. Yaying, B. Hazarika, S. A. Mohiuddine, Domain of Padovan q-difference matrix in sequence spaces $\ell_p$ and $\ell_\infty$, Filomat, 36(3) (2022), 905-919.
  • [22] T. Yaying, B. Hazarika, O. M. Kalthum S. K. Mohamed, Awad A. Bakery, On new Banach sequence spaces involving Leonardo numbers and the associated mapping ideal, J. Funct. Spaces, 2022, Article ID: 8269000, 21 Pages.
  • [23] M. İlkhan, A new conservative matrix derived by Catalan numbers and its matrix domain in the spaces c and c0, Linear and Multilinear Algebra, https://doi.org/10.1080/03081087.2019.1635071
  • [24] M.İlkhan, E. E. Kara, Matrix transformations and compact operators on Catalan sequence spaces, J. Math. Anal. Appl., 498 (2021), 124925.
  • [25] M. Karakaş, On the sequence spaces involving Bell numbers, Linear and Multilinear Algebra, https://doi.org/10.1080/03081087.2022.2098225
  • [26] A. Wilansky, Summability Through Functional Analysis. Amsterdam-New York-Oxford: North- Holland Mathematics Studies 85; 1984.
  • [27] M. Stieglitz, H. Tietz, Matrix transformationen von folgenraumen eine ergebnisbersicht, Math Z., 154 (1977), 1-16.
  • [28] E. Malkowsky, V. Rakocevic, An introduction into the theory of sequence spaces and measure of noncompactness, Zbornik Radova, Matematicki Inst SANU, Belgrad, 9(17) (2000), 143-234.
  • [29] V. Rakocevic, Measures of noncompactness and some applications, Filomat, 12 (1998), 87-120.
  • [30] M. Mursaleen, AK. Noman, Compactness by the Hausdorff measure of noncompactness, Nonlinear Anal., 73(8) (2010), 2541-2557.
  • [31] M. Mursaleen, AK. Noman, Applications of the Hausdorffmeasure of noncompactness in some sequence spaces of weighted means, Comput Math Appl. 2010;60(5) (2010), 1245-1258.
  • [32] F. Bas¸ar, E. Malkowsky, The characterization of compact operators on spaces of strongly summable and bounded sequences, Appl Math Comput., 217 (2011), 5199-5207.
  • [33] E.E. Kara, M. Başarır, On compact operators and some Euler B(m) difference sequence spaces and compact operators, J. Math. Anal. Appl., 379 (2011), 499-511.
  • [34] M. Başarır, E. E. Kara, On some difference sequence spaces of weighted means and compact operators, Ann. Funct. Anal., 2 (2011), 114-129.
  • [35] M. Başarır, E. E. Kara, On the B-difference sequence space derived by generalized weighted mean and compact operators, J. Math. Anal. Appl., 391 (2012), 67-81.
There are 35 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Articles
Authors

Serkan Demiriz 0000-0002-4662-6020

Sezer Erdem 0000-0001-9420-8264

Early Pub Date February 27, 2024
Publication Date March 4, 2024
Submission Date January 4, 2024
Acceptance Date February 13, 2024
Published in Issue Year 2024 Volume: 7 Issue: 1

Cite

APA Demiriz, S., & Erdem, S. (2024). Mersenne Matrix Operator and Its Application in $p-$Summable Sequence Space. Communications in Advanced Mathematical Sciences, 7(1), 42-55. https://doi.org/10.33434/cams.1414791
AMA Demiriz S, Erdem S. Mersenne Matrix Operator and Its Application in $p-$Summable Sequence Space. Communications in Advanced Mathematical Sciences. March 2024;7(1):42-55. doi:10.33434/cams.1414791
Chicago Demiriz, Serkan, and Sezer Erdem. “Mersenne Matrix Operator and Its Application in $p-$Summable Sequence Space”. Communications in Advanced Mathematical Sciences 7, no. 1 (March 2024): 42-55. https://doi.org/10.33434/cams.1414791.
EndNote Demiriz S, Erdem S (March 1, 2024) Mersenne Matrix Operator and Its Application in $p-$Summable Sequence Space. Communications in Advanced Mathematical Sciences 7 1 42–55.
IEEE S. Demiriz and S. Erdem, “Mersenne Matrix Operator and Its Application in $p-$Summable Sequence Space”, Communications in Advanced Mathematical Sciences, vol. 7, no. 1, pp. 42–55, 2024, doi: 10.33434/cams.1414791.
ISNAD Demiriz, Serkan - Erdem, Sezer. “Mersenne Matrix Operator and Its Application in $p-$Summable Sequence Space”. Communications in Advanced Mathematical Sciences 7/1 (March 2024), 42-55. https://doi.org/10.33434/cams.1414791.
JAMA Demiriz S, Erdem S. Mersenne Matrix Operator and Its Application in $p-$Summable Sequence Space. Communications in Advanced Mathematical Sciences. 2024;7:42–55.
MLA Demiriz, Serkan and Sezer Erdem. “Mersenne Matrix Operator and Its Application in $p-$Summable Sequence Space”. Communications in Advanced Mathematical Sciences, vol. 7, no. 1, 2024, pp. 42-55, doi:10.33434/cams.1414791.
Vancouver Demiriz S, Erdem S. Mersenne Matrix Operator and Its Application in $p-$Summable Sequence Space. Communications in Advanced Mathematical Sciences. 2024;7(1):42-55.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..