Research Article
BibTex RIS Cite
Year 2025, Volume: 8 Issue: 1, 49 - 56, 27.03.2025
https://doi.org/10.33434/cams.1605646

Abstract

References

  • [1] R. S. Anderssen, The effect of discontinuities in density and shear velocity on the asymptotic overtone structure of torsional eigenfrequencies of the Earth, Geophys. J. R. Astr. Soc., 50 (1997), 303-309.
  • [2] E. R. Lapwood, T. Usami, Free Oscillations of the Earth, Cambridge Univ. Press, Cambridge, 1981.
  • [3] O. H. Hald, Discontinuous inverse eigenvalue problems, Comm. Pure and Appl. Math., 37 (1984), 539-577.
  • [4] D. Shepelsky, The inverse problem of reconstruction of the medium’s conductivity in a class of discontinuous and increasing functions, Spectral operator theory and related topics: Adv. In Sov. Math., Providence, Amer. Math. Soc., 19 (1994), 209-232.
  • [5] M. Kobayashi, A uniqueness for discontinuous inverse Sturm-Liouville problems with symmetric potentials, Inverse Probl., 5 (1985), 767-781.
  • [6] G. Freiling, V. Yurko, On inverse Sturm-Liouville Problems and Their Applications, Nova Science Publisher Inc., New York, 2008.
  • [7] G. Freiling, V. Yurko, Lectures on Differential Equations of Mathematical Physics-A First Course, Nova Science Publisher Inc., New York, 2008.
  • [8] E. N. Akhmedova, On representation of solution of Sturm-Liouville equation with discontinuous coefficients, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerbaijan, 4 (2003), 7-18.
  • [9] E. N. Akhmedova, H. M. Huseynova, On eigenvalues and eigenfunctions of one class of Sturm-Liouville with discontinuous coefficients, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 23 (2003), 7-18.
  • [10] E. N. Akhmedova, The definition of one class of Sturm-Liouville Operators with discontinuous coefficients by Weyl function, Proceedings of IMM of NAS of Azerbaijan, 30 (2005), 3-8.
  • [11] D. Karahan, Kh. R. Mamedov, ˙I. F. Hashimoglu, On main equation for inverse Sturm–Liouville operator with discontinuous coefficient, Itogi Nauki Tekh. Ser. Sovrem. Mat. Prilozh. Temat. Obz., 225 (2023), 73-86.
  • [12] Kh. R. Mamedov, D. Karahan, On an inverse problem for Sturm-Liouville equation, EJPAM, 10 (2017), 535-543.
  • [13] Kh. R. Mamedov, F. A. Cetinkaya, Inverse problem for a class of Sturm-Liouville operator with spectral parameter in boundary condition, Bound. Value Probl., 2013 (2013), 183.
  • [14] Ö. Akçay, Kh. R. Mamedov, Inverse spectral problem for Dirac operators by spectral data, Filomat, 31 (2017), 1065-1077.
  • [15] R. Bellman, K. L. Kuk, Difference-Differential Equations, M. Mir., 1967.

On the Solution of a Class of Discontinuous Sturm-Liouville Problems

Year 2025, Volume: 8 Issue: 1, 49 - 56, 27.03.2025
https://doi.org/10.33434/cams.1605646

Abstract

This study examines boundary value problems consisting of a second-order differential equation with discontinuous coefficients and boundary conditions. Asymptotic formulas for the eigenvalues and eigenfunctions of the problem are derived, and an expansion formula is obtained based on the eigenfunctions.

References

  • [1] R. S. Anderssen, The effect of discontinuities in density and shear velocity on the asymptotic overtone structure of torsional eigenfrequencies of the Earth, Geophys. J. R. Astr. Soc., 50 (1997), 303-309.
  • [2] E. R. Lapwood, T. Usami, Free Oscillations of the Earth, Cambridge Univ. Press, Cambridge, 1981.
  • [3] O. H. Hald, Discontinuous inverse eigenvalue problems, Comm. Pure and Appl. Math., 37 (1984), 539-577.
  • [4] D. Shepelsky, The inverse problem of reconstruction of the medium’s conductivity in a class of discontinuous and increasing functions, Spectral operator theory and related topics: Adv. In Sov. Math., Providence, Amer. Math. Soc., 19 (1994), 209-232.
  • [5] M. Kobayashi, A uniqueness for discontinuous inverse Sturm-Liouville problems with symmetric potentials, Inverse Probl., 5 (1985), 767-781.
  • [6] G. Freiling, V. Yurko, On inverse Sturm-Liouville Problems and Their Applications, Nova Science Publisher Inc., New York, 2008.
  • [7] G. Freiling, V. Yurko, Lectures on Differential Equations of Mathematical Physics-A First Course, Nova Science Publisher Inc., New York, 2008.
  • [8] E. N. Akhmedova, On representation of solution of Sturm-Liouville equation with discontinuous coefficients, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerbaijan, 4 (2003), 7-18.
  • [9] E. N. Akhmedova, H. M. Huseynova, On eigenvalues and eigenfunctions of one class of Sturm-Liouville with discontinuous coefficients, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 23 (2003), 7-18.
  • [10] E. N. Akhmedova, The definition of one class of Sturm-Liouville Operators with discontinuous coefficients by Weyl function, Proceedings of IMM of NAS of Azerbaijan, 30 (2005), 3-8.
  • [11] D. Karahan, Kh. R. Mamedov, ˙I. F. Hashimoglu, On main equation for inverse Sturm–Liouville operator with discontinuous coefficient, Itogi Nauki Tekh. Ser. Sovrem. Mat. Prilozh. Temat. Obz., 225 (2023), 73-86.
  • [12] Kh. R. Mamedov, D. Karahan, On an inverse problem for Sturm-Liouville equation, EJPAM, 10 (2017), 535-543.
  • [13] Kh. R. Mamedov, F. A. Cetinkaya, Inverse problem for a class of Sturm-Liouville operator with spectral parameter in boundary condition, Bound. Value Probl., 2013 (2013), 183.
  • [14] Ö. Akçay, Kh. R. Mamedov, Inverse spectral problem for Dirac operators by spectral data, Filomat, 31 (2017), 1065-1077.
  • [15] R. Bellman, K. L. Kuk, Difference-Differential Equations, M. Mir., 1967.
There are 15 citations in total.

Details

Primary Language English
Subjects Ordinary Differential Equations, Difference Equations and Dynamical Systems
Journal Section Articles
Authors

Hanlar Reşidoğlu 0000-0002-3283-9535

Döne Karahan 0000-0001-6644-5596

Ufuk Çelik 0009-0005-2982-725X

Early Pub Date March 24, 2025
Publication Date March 27, 2025
Submission Date December 22, 2024
Acceptance Date March 14, 2025
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Reşidoğlu, H., Karahan, D., & Çelik, U. (2025). On the Solution of a Class of Discontinuous Sturm-Liouville Problems. Communications in Advanced Mathematical Sciences, 8(1), 49-56. https://doi.org/10.33434/cams.1605646
AMA Reşidoğlu H, Karahan D, Çelik U. On the Solution of a Class of Discontinuous Sturm-Liouville Problems. Communications in Advanced Mathematical Sciences. March 2025;8(1):49-56. doi:10.33434/cams.1605646
Chicago Reşidoğlu, Hanlar, Döne Karahan, and Ufuk Çelik. “On the Solution of a Class of Discontinuous Sturm-Liouville Problems”. Communications in Advanced Mathematical Sciences 8, no. 1 (March 2025): 49-56. https://doi.org/10.33434/cams.1605646.
EndNote Reşidoğlu H, Karahan D, Çelik U (March 1, 2025) On the Solution of a Class of Discontinuous Sturm-Liouville Problems. Communications in Advanced Mathematical Sciences 8 1 49–56.
IEEE H. Reşidoğlu, D. Karahan, and U. Çelik, “On the Solution of a Class of Discontinuous Sturm-Liouville Problems”, Communications in Advanced Mathematical Sciences, vol. 8, no. 1, pp. 49–56, 2025, doi: 10.33434/cams.1605646.
ISNAD Reşidoğlu, Hanlar et al. “On the Solution of a Class of Discontinuous Sturm-Liouville Problems”. Communications in Advanced Mathematical Sciences 8/1 (March 2025), 49-56. https://doi.org/10.33434/cams.1605646.
JAMA Reşidoğlu H, Karahan D, Çelik U. On the Solution of a Class of Discontinuous Sturm-Liouville Problems. Communications in Advanced Mathematical Sciences. 2025;8:49–56.
MLA Reşidoğlu, Hanlar et al. “On the Solution of a Class of Discontinuous Sturm-Liouville Problems”. Communications in Advanced Mathematical Sciences, vol. 8, no. 1, 2025, pp. 49-56, doi:10.33434/cams.1605646.
Vancouver Reşidoğlu H, Karahan D, Çelik U. On the Solution of a Class of Discontinuous Sturm-Liouville Problems. Communications in Advanced Mathematical Sciences. 2025;8(1):49-56.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..