Year 2025,
Volume: 8 Issue: 1, 36 - 48, 27.03.2025
Sercan Turhan
,
Ercihan Güngör
,
İmdat İşcan
References
- [1] S. Varosanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303–311.
- [2] M. Bombardelli, S. Varosanec, Properties of h-convex functions related to the Hermite-Hadamard-Fej´er inequalities, Comput. Math. Appl., 58(9) (2009), 1869–1877.
- [3] Ş. Demir, New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are exponential trigonometric convex, Sigma, 41(3) (2023), 451–456.
- [4] S. Turhan, Novel results based on generalisation of some integral inequalities for trigonometrically-p function, Sakarya University Journal of Science, 24(4) (2020), 665–674.
- [5] Ş. Demir, S. Maden, İ. İscan, M. Kadakal, On new Simpson’s type inequalities for trigonometrically convex functions with applications, Cumhuriyet Science Journal, 41(4) (2020), 862–874.
- [6] M. Z. Sarikaya, On new Hermite-Hadamard-Fejer type integral inequalities, Stud. Univ. Babes-Bolyai Math., 57(3) (2012).
- [7] H. Budak, H. Kara, T. Tunc, F. Hezenci, S. Khan, On new trapezoid and midpoint type inequalities for generalized quantum integrals, Filomat, 38(7) (2024), 2323–2341.
- [8] S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and its applications, RGMIA Monograph, (2002).
- [9] B. Çelik, H. Budak, E. Set, On generalized Milne type inequalities for new conformable fractional integrals, Filomat, 38(5) (2024), 1807–1823.
- [10] G. Zabandan, A new refinement of the Hermite-Hadamard inequality for convex functions, J. Inequal. Pure Appl. Math., 10(2) (2009), Article ID 45.
- [11] C. Ünal, F. Hezenci, H. Budak, Conformable fractional Newton-type inequalities with respect to differentiable convex functions, J. Inequal. Appl., 2023(1) (2023), 85.
- [12] F. Hezenci, H. Budak, An extensive study on parameterized inequalities for conformable fractional integrals, Anal. Math. Phys., 13(5) (2023), 82.
- [13] F. Hezenci, H. Budak, Novel results on trapezoid-type inequalities for conformable fractional integrals, Turkish J. Math., 47(2) (2023), 425–438.
- [14] J. Hadamard, Etude sur les proprie´te´s des fonctions entie`res et en particulier d’une fonction conside´re´e par Riemann, J. Math. Pures Appl., 58 (1893), 171–215.
- [15] L. Fejer, Über die Fourierreihen II, Math. Naturwiss. Anz. Ungar. Akad. Wiss., 24 (1906), 369–390.
- [16] H. Kadakal, Hermite-Hadamard type inequalities for trigonometrically convex functions, Sci. Stud. Res. Ser. Math. Inform., 28(2) (2018), 19–28.
Investigations into Hermite-Hadamard-Fejér Inequalities within the Realm of Trigonometric Convexity
Year 2025,
Volume: 8 Issue: 1, 36 - 48, 27.03.2025
Sercan Turhan
,
Ercihan Güngör
,
İmdat İşcan
Abstract
This study is predicated on the exploration of lemmas pertaining to the Hermite-Hadamard-Fejér type integral inequality, focusing on both trapezoidal and midpoint inequalities. It delves into the realm of trigonometrically convex functions and is structured around the foundational lemmas that govern these inequalities. Through rigorous analysis, the research has successfully derived novel theorems and garnered insightful results that enhance the understanding of trigonometric convexity. Further, the study has undertaken the application of these theorems to exemplify trigonometrically convex functions, thereby providing practical instances that underline the theoretical developments. These applications not only serve to demonstrate the utility of the newly formulated results but also contribute to the broader field of convex analysis by introducing innovative perspectives on integral inequalities. The synthesis of theory and application encapsulated in this research marks a significant stride in the advancement of mathematical inequalities and their relevance to the study of convex functions.
References
- [1] S. Varosanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303–311.
- [2] M. Bombardelli, S. Varosanec, Properties of h-convex functions related to the Hermite-Hadamard-Fej´er inequalities, Comput. Math. Appl., 58(9) (2009), 1869–1877.
- [3] Ş. Demir, New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are exponential trigonometric convex, Sigma, 41(3) (2023), 451–456.
- [4] S. Turhan, Novel results based on generalisation of some integral inequalities for trigonometrically-p function, Sakarya University Journal of Science, 24(4) (2020), 665–674.
- [5] Ş. Demir, S. Maden, İ. İscan, M. Kadakal, On new Simpson’s type inequalities for trigonometrically convex functions with applications, Cumhuriyet Science Journal, 41(4) (2020), 862–874.
- [6] M. Z. Sarikaya, On new Hermite-Hadamard-Fejer type integral inequalities, Stud. Univ. Babes-Bolyai Math., 57(3) (2012).
- [7] H. Budak, H. Kara, T. Tunc, F. Hezenci, S. Khan, On new trapezoid and midpoint type inequalities for generalized quantum integrals, Filomat, 38(7) (2024), 2323–2341.
- [8] S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and its applications, RGMIA Monograph, (2002).
- [9] B. Çelik, H. Budak, E. Set, On generalized Milne type inequalities for new conformable fractional integrals, Filomat, 38(5) (2024), 1807–1823.
- [10] G. Zabandan, A new refinement of the Hermite-Hadamard inequality for convex functions, J. Inequal. Pure Appl. Math., 10(2) (2009), Article ID 45.
- [11] C. Ünal, F. Hezenci, H. Budak, Conformable fractional Newton-type inequalities with respect to differentiable convex functions, J. Inequal. Appl., 2023(1) (2023), 85.
- [12] F. Hezenci, H. Budak, An extensive study on parameterized inequalities for conformable fractional integrals, Anal. Math. Phys., 13(5) (2023), 82.
- [13] F. Hezenci, H. Budak, Novel results on trapezoid-type inequalities for conformable fractional integrals, Turkish J. Math., 47(2) (2023), 425–438.
- [14] J. Hadamard, Etude sur les proprie´te´s des fonctions entie`res et en particulier d’une fonction conside´re´e par Riemann, J. Math. Pures Appl., 58 (1893), 171–215.
- [15] L. Fejer, Über die Fourierreihen II, Math. Naturwiss. Anz. Ungar. Akad. Wiss., 24 (1906), 369–390.
- [16] H. Kadakal, Hermite-Hadamard type inequalities for trigonometrically convex functions, Sci. Stud. Res. Ser. Math. Inform., 28(2) (2018), 19–28.