Research Article
BibTex RIS Cite

Some Geometric Properties of Lorentzian $\beta$-Kenmotsu Manifolds Admitting $\eta$-Ricci-Yamabe Solitons

Year 2025, Volume: 8 Issue: 3, 151 - 159, 23.09.2025
https://doi.org/10.33434/cams.1708440

Abstract

In this paper, we investigate the characterization of Lorentzian $\beta $-Kenmotsu manifolds admitting $\eta$-Ricci-Yamabe solitons. First, we examine the cases where such manifolds are Ricci pseudosymmetric and Ricci semisymmetric. Then, by employing certain special curvature tensors, we explore the concepts of Ricci pseudosymmetry and semisymmetry in greater detail and construct the geometry of the Lorentzian $\beta$-Kenmotsu manifold accordingly.

References

  • [1] D. G. Prakasha, C. S. Bagewadi, N. S. Basavarajappa, On pseudosymmetric Lorentzian $\alpha$-Sasakian manifolds, Int. J. Pure Appl. Math., 48 (2008), 57-65.
  • [2] G. Ingalahalli, C. S. Bagewadi, Ricci solitons $\alpha$-Sasakian manifolds, ISRN Goem., 2012(1) (2012), 1-13. https://doi.org/10.5402/2012/421384
  • [3] V. Rajan, P.S. Gyanvendra, P. Pawan, K.M. Anand, $W_{8}$-curvature tensor in Lorentzian $\alpha$-Sasakian manifold, TURCOMAT, 11(3) (2020), 1061-1072. https://doi.org/10.17762/turcomat.v11i3.12561
  • [4] C. S. Bagewadi, E. G. Kumar, Notes on trans-Sasakian manifolds, Tensor (N.S.), 65(1) (2004), 80-88.
  • [5] R. S. Hamilton, The Ricci flow on surfaces, Mathematics and General Relativity, 71 (1998), 237-262.
  • [6] S. Güler, M. Crasmareanu, Ricci-Yamabe maps for Riemannian flow and their volume variation and volume entropy, Turk. J. Math., 43(5) (2019), 2631-2641. https://doi.org/10.3906/mat-1902-38
  • [7] M. D. Siddiqi, M. Akyol, $\eta$-Ricci-Yamabe solitons on Riemannian submersions from Riemannian manifolds, (2020), arXiv:14114v1[math.DG].
  • [8] R. Seszcz, L. Verstraelen, S. Yaprak, Warped products realizing a certain condition of pseudosymmetric type imposed on the curvature tensor, Chin. J. Math., 22(2) (1994), 139-157.
  • [9] F. Zengin, S. A. Demirbağ, S. A. Uysal, H. B. Yilmaz, Some vector fields on a Riemannian manifold with semi-symmetric metric connection, Bull. Iranian Math. Soc., 38(2) (2012), 479–490.
  • [10] K. De, U. C. De, Almost quasi-Yamabe solitons and gradient almost quasi-Yamabe solitons in paracontact geometry, Quaest. Math., 44(11) (2021), 1429-1440. https://doi.org/10.2989/16073606.2020.1799882
  • [11] R. Kundu, A. Das, A. Biswas, Conformal Ricci soliton in Sasakian manifolds admitting general connection, J. Hyperstruct., 13(1) (2024), 46-61. https://doi.org/10.22098/jhs.2024.14940.1012
  • [12] M. Atçeken, T. Mert, P. Uygun, Ricci-Pseudosymmetric $\left( LCS\right) _{n}-$manifolds admitting almost $\eta-$Ricci solitons, Asian J. Math. Comput. Res., 29(2) (2022), 23-32. https://doi.org/10.56557/ajomcor/2022/v29i27900
  • [13] H. Nagaraja, C. R. Premalatta, Ricci solitons in Kenmotsu manifolds, J. Math. Analysis, 3(2) (2012), 18–24.
  • [14] A. N. Siddiqui, M. D. Siddiqi, V. Vandana, Ricci solitons on $\alpha$-Sasakian manifolds with quarter symmetric metric connection, Bulletin of the Transilvania University of Braşov Series III: Mathematics and Computer Science, 4(66)(1) (2024), 175-190. https://doi.org/10.31926/but.mif.2024.4.66.1.13
  • [15] M. D. Siddiqi, $\eta$-Einstein solitons in an $\left(\varepsilon\right) $-Kenmotsu manifolds with a semi-symmetric metric connection, Annales, Univ. Sci. Budapest, 62(LXII) (2019), 5-25.
  • [16] M. D. Siddiqi, $\eta$-Ricci solitons in $\delta$-Lorentzian trans Sasakian manifolds with a semi-symmetric metric connection, Kyungpook Math. J., 59(3) (2019), 537-562. https://doi.org/10.5666/KMJ.2019.59.3.537
  • [17] M. Tripathi, P. Gupta, $\tau-$−curvature tensor on a semi-Riemannian manifold, J. Adv. Math. Studies, 4 (2011), 117-129.
  • [18] G. Ayar, M. Yıldırım, $\eta$-Ricci solitons on nearly Kenmotsu manifolds, Asian-Eur. J. Math., 12(6) (2019), 2040002. https://doi.org/10.1142/S1793557120400021
  • [19] S. K. Pankaj, G. A. Chaubey, Yamabe and gradient Yamabe solitons on 3-dimensional hyperbolic Kenmotsu manifolds, Differ. Geom. Dyn. Syst, 23 (2021), 183-196.
  • [20] G. Ayar, Kenmotsu manifoldlarda konformal Ricci solitonlar, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 19(3) (2019), 635-642. https://doi.org/10.35414/akufemubid.623574
  • [21] Y. J. Suh, K. De, U. C. De, Compact almost Co-Kahler manifolds and Ricci-Yamabe solitons, Filomat, 38(23) (2024), 8069-8080. https://doi.org/10.2298/FIL2423069S
There are 21 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Articles
Authors

Tuğba Mert 0000-0001-8258-8298

Mehmet Atçeken 0000-0002-1242-4359

Early Pub Date August 13, 2025
Publication Date September 23, 2025
Submission Date May 28, 2025
Acceptance Date August 11, 2025
Published in Issue Year 2025 Volume: 8 Issue: 3

Cite

APA Mert, T., & Atçeken, M. (2025). Some Geometric Properties of Lorentzian $\beta$-Kenmotsu Manifolds Admitting $\eta$-Ricci-Yamabe Solitons. Communications in Advanced Mathematical Sciences, 8(3), 151-159. https://doi.org/10.33434/cams.1708440
AMA Mert T, Atçeken M. Some Geometric Properties of Lorentzian $\beta$-Kenmotsu Manifolds Admitting $\eta$-Ricci-Yamabe Solitons. Communications in Advanced Mathematical Sciences. September 2025;8(3):151-159. doi:10.33434/cams.1708440
Chicago Mert, Tuğba, and Mehmet Atçeken. “Some Geometric Properties of Lorentzian $\beta$-Kenmotsu Manifolds Admitting $\eta$-Ricci-Yamabe Solitons”. Communications in Advanced Mathematical Sciences 8, no. 3 (September 2025): 151-59. https://doi.org/10.33434/cams.1708440.
EndNote Mert T, Atçeken M (September 1, 2025) Some Geometric Properties of Lorentzian $\beta$-Kenmotsu Manifolds Admitting $\eta$-Ricci-Yamabe Solitons. Communications in Advanced Mathematical Sciences 8 3 151–159.
IEEE T. Mert and M. Atçeken, “Some Geometric Properties of Lorentzian $\beta$-Kenmotsu Manifolds Admitting $\eta$-Ricci-Yamabe Solitons”, Communications in Advanced Mathematical Sciences, vol. 8, no. 3, pp. 151–159, 2025, doi: 10.33434/cams.1708440.
ISNAD Mert, Tuğba - Atçeken, Mehmet. “Some Geometric Properties of Lorentzian $\beta$-Kenmotsu Manifolds Admitting $\eta$-Ricci-Yamabe Solitons”. Communications in Advanced Mathematical Sciences 8/3 (September2025), 151-159. https://doi.org/10.33434/cams.1708440.
JAMA Mert T, Atçeken M. Some Geometric Properties of Lorentzian $\beta$-Kenmotsu Manifolds Admitting $\eta$-Ricci-Yamabe Solitons. Communications in Advanced Mathematical Sciences. 2025;8:151–159.
MLA Mert, Tuğba and Mehmet Atçeken. “Some Geometric Properties of Lorentzian $\beta$-Kenmotsu Manifolds Admitting $\eta$-Ricci-Yamabe Solitons”. Communications in Advanced Mathematical Sciences, vol. 8, no. 3, 2025, pp. 151-9, doi:10.33434/cams.1708440.
Vancouver Mert T, Atçeken M. Some Geometric Properties of Lorentzian $\beta$-Kenmotsu Manifolds Admitting $\eta$-Ricci-Yamabe Solitons. Communications in Advanced Mathematical Sciences. 2025;8(3):151-9.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..