Research Article
BibTex RIS Cite

Weighted and Controlled Continuous g-Frames and their Multipliers in Hilbert Spaces

Year 2016, Volume: 13 Issue: 1, - , 01.05.2016

Abstract

A generalization of weighted, multiplier, controlled from frame and Bessel sequences to continuous
g-frames and continuous g-Bessel sequences in Hilbert spaces is presented in this study. Moreover,
we find a dual of a continuous g-frame in the case that the multiplier operator is invertible. Finally, it is
demonstrated that a controlled continuous g-frame is equivalent to a continuous g-frame.

References

  • [1] M. R. Abdollahpour, M. H. Faroughi, ”Continuous g-Frames in Hilbert Spaces”, South-east Asian. Bull. Math., 32, (2008), 1-19.
  • [2] S. T. Ali, J. P. Antoine, J. P. Gazeau, ”Continuous Frames in Hilbert Spaces”, Annals of Physics, 222, (1993), 137.
  • [3] P. Balazs, ”Basic definition and properties of Bessel multipliers”, J. Math. Anal. Appl., 325(1), (2007) 571-585.
  • [4] P. Balazs, J. P. Antoine, A. Grybos, ”Weighted and Controlled Frames”, Int. J. Wavelets Multiresolut. Inf. Process., 8(1), (2010), 109-132.
  • [5] P. Balazs, D. Bayer, A. Rahimi, ”Multipliers for continuous frames in Hilbert spaces”, J. Phys. A:Math. Theor., 45, (2012) 1-24.
  • [6] I. Bogdanova, P. Vandergheynst, J. P. Antoine, L. Jacques, M. Morvidone, ”Stereographic wavelet frames on the sphere”, Applied Comput. Harmon. Anal., 19, (2005), 223-252.
  • [7] O. Christensen, ”An introduction to Frame and Riesz Bases”, Birkh¨auser, Boston, 2003.
  • [8] I. Daubechies, A. Grossmann, Y. Meyer, ”Painless nonorthogonal expansions”, J. Math. Phys., 27, (1986), 1271- 1283.
  • [9] I. Daubechies, ”Ten Lectures on Wavelets”, (1992).
  • [10] M. Dorfler, ”Gabor analysis for a class of signals called music”, Ph.D. Thesis, University of Vienna, (2003).
  • [11] R. Duffin, A. Schaeffer, ”A class of nonharmonic Fourier series”, Trans. Amer. Math. Soc., 72, (1952), 341-366.
  • [12] H. G. Feichtinger and K. Nowak, ”A first survey of Gabor multipliers”, Advances in Gabor Analysis, 99-128, Appl. Numer. Harmon. Anal., Birkh¨auser, Boston, MA, (2003).
  • [13] J. P. Gabardo, D. Han, ”Frames Associated with Measurable Space”, Adv. Comp. Math., 18, (2003), 127-147.
  • [14] H. Heuser, ”Functional analysis”, John Wiley, New York, (1982).
  • [15] G. Kaiser, ”A Friendly Guide to Wavelets”, Birkh¨auser, (1994).
  • [16] G. Matz and F. Hlawatsch, ”Linear Time-Frequency Filters”, One-line Algorithms and Applicatioins, eds. A. Papandredreou-Suppappola, Boca Raton (FL): CRC Press, Ch., 6, (2002), 205-271.
  • [17] A. Najati, A. Rahimi, ”Generalized Frames in Hilbert spaces”, Bull. Iranian Math. Soc., 35(1), (2009), 97-109.
  • [18] A. Rahimi, ”Multipliers of Genralized frames in Hilbert spaces”, Bull. Iranian Math. Soc., 37(1), (2011), 63-88.
  • [19] A. Rahimi and P. Balazs, ”Multipliers for p-Frames in Banach spaces”, Integral Equations and Operator Theory, 68, (2010), 193-205.
  • [20] A. Rahimi and A. Fereydooni, ”Controlled g-Frames and Their g-Multipliers in Hilbert spaces”, An. St. Univ. Ovidius Constanta, 21 (2013), 223-236.
  • [21] W. Sun, ”g-Frame and g-Riesz bases”, J. Math. Anal. Appl., 322, (2006), 437-452.
Year 2016, Volume: 13 Issue: 1, - , 01.05.2016

Abstract

References

  • [1] M. R. Abdollahpour, M. H. Faroughi, ”Continuous g-Frames in Hilbert Spaces”, South-east Asian. Bull. Math., 32, (2008), 1-19.
  • [2] S. T. Ali, J. P. Antoine, J. P. Gazeau, ”Continuous Frames in Hilbert Spaces”, Annals of Physics, 222, (1993), 137.
  • [3] P. Balazs, ”Basic definition and properties of Bessel multipliers”, J. Math. Anal. Appl., 325(1), (2007) 571-585.
  • [4] P. Balazs, J. P. Antoine, A. Grybos, ”Weighted and Controlled Frames”, Int. J. Wavelets Multiresolut. Inf. Process., 8(1), (2010), 109-132.
  • [5] P. Balazs, D. Bayer, A. Rahimi, ”Multipliers for continuous frames in Hilbert spaces”, J. Phys. A:Math. Theor., 45, (2012) 1-24.
  • [6] I. Bogdanova, P. Vandergheynst, J. P. Antoine, L. Jacques, M. Morvidone, ”Stereographic wavelet frames on the sphere”, Applied Comput. Harmon. Anal., 19, (2005), 223-252.
  • [7] O. Christensen, ”An introduction to Frame and Riesz Bases”, Birkh¨auser, Boston, 2003.
  • [8] I. Daubechies, A. Grossmann, Y. Meyer, ”Painless nonorthogonal expansions”, J. Math. Phys., 27, (1986), 1271- 1283.
  • [9] I. Daubechies, ”Ten Lectures on Wavelets”, (1992).
  • [10] M. Dorfler, ”Gabor analysis for a class of signals called music”, Ph.D. Thesis, University of Vienna, (2003).
  • [11] R. Duffin, A. Schaeffer, ”A class of nonharmonic Fourier series”, Trans. Amer. Math. Soc., 72, (1952), 341-366.
  • [12] H. G. Feichtinger and K. Nowak, ”A first survey of Gabor multipliers”, Advances in Gabor Analysis, 99-128, Appl. Numer. Harmon. Anal., Birkh¨auser, Boston, MA, (2003).
  • [13] J. P. Gabardo, D. Han, ”Frames Associated with Measurable Space”, Adv. Comp. Math., 18, (2003), 127-147.
  • [14] H. Heuser, ”Functional analysis”, John Wiley, New York, (1982).
  • [15] G. Kaiser, ”A Friendly Guide to Wavelets”, Birkh¨auser, (1994).
  • [16] G. Matz and F. Hlawatsch, ”Linear Time-Frequency Filters”, One-line Algorithms and Applicatioins, eds. A. Papandredreou-Suppappola, Boca Raton (FL): CRC Press, Ch., 6, (2002), 205-271.
  • [17] A. Najati, A. Rahimi, ”Generalized Frames in Hilbert spaces”, Bull. Iranian Math. Soc., 35(1), (2009), 97-109.
  • [18] A. Rahimi, ”Multipliers of Genralized frames in Hilbert spaces”, Bull. Iranian Math. Soc., 37(1), (2011), 63-88.
  • [19] A. Rahimi and P. Balazs, ”Multipliers for p-Frames in Banach spaces”, Integral Equations and Operator Theory, 68, (2010), 193-205.
  • [20] A. Rahimi and A. Fereydooni, ”Controlled g-Frames and Their g-Multipliers in Hilbert spaces”, An. St. Univ. Ovidius Constanta, 21 (2013), 223-236.
  • [21] W. Sun, ”g-Frame and g-Riesz bases”, J. Math. Anal. Appl., 322, (2006), 437-452.
There are 21 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Sayyed Mehrab Ramezani This is me

Akbar Nazari This is me

Publication Date May 1, 2016
Published in Issue Year 2016 Volume: 13 Issue: 1

Cite

APA Ramezani, S. M., & Nazari, A. (2016). Weighted and Controlled Continuous g-Frames and their Multipliers in Hilbert Spaces. Cankaya University Journal of Science and Engineering, 13(1).
AMA Ramezani SM, Nazari A. Weighted and Controlled Continuous g-Frames and their Multipliers in Hilbert Spaces. CUJSE. May 2016;13(1).
Chicago Ramezani, Sayyed Mehrab, and Akbar Nazari. “Weighted and Controlled Continuous G-Frames and Their Multipliers in Hilbert Spaces”. Cankaya University Journal of Science and Engineering 13, no. 1 (May 2016).
EndNote Ramezani SM, Nazari A (May 1, 2016) Weighted and Controlled Continuous g-Frames and their Multipliers in Hilbert Spaces. Cankaya University Journal of Science and Engineering 13 1
IEEE S. M. Ramezani and A. Nazari, “Weighted and Controlled Continuous g-Frames and their Multipliers in Hilbert Spaces”, CUJSE, vol. 13, no. 1, 2016.
ISNAD Ramezani, Sayyed Mehrab - Nazari, Akbar. “Weighted and Controlled Continuous G-Frames and Their Multipliers in Hilbert Spaces”. Cankaya University Journal of Science and Engineering 13/1 (May 2016).
JAMA Ramezani SM, Nazari A. Weighted and Controlled Continuous g-Frames and their Multipliers in Hilbert Spaces. CUJSE. 2016;13.
MLA Ramezani, Sayyed Mehrab and Akbar Nazari. “Weighted and Controlled Continuous G-Frames and Their Multipliers in Hilbert Spaces”. Cankaya University Journal of Science and Engineering, vol. 13, no. 1, 2016.
Vancouver Ramezani SM, Nazari A. Weighted and Controlled Continuous g-Frames and their Multipliers in Hilbert Spaces. CUJSE. 2016;13(1).