Research Article
BibTex RIS Cite
Year 2017, Volume: 14 Issue: 2, - , 01.11.2017

Abstract

References

  • [1] E. Abakumov, J. Gordon, Common hypercyclic vectors for multiples of backward shift, J. Funct. Anal., 200(2), (2003), 494-504.
  • [2] F. Bayart, E. Matheron, Dynamics of linear operators, Cambridge Tract ´ s in Mathematics, Cambridge University Press, Cambridge, (2009).
  • [3] J. B`es, Dynamics of weighted composition operators, Complex Anal. Oper. Theory, 8(1), (2014), 159-176.
  • [4] J. P. B`es, A. Peris, Hereditarily hypercyclic operators, J. Funct. Anal., 167, (1999), 94-112.
  • [5] G. Costakis, A. Manoussos, J-class weighted shifts on the space of bounded sequences of complex numbers, Integr. Equ. Oper. Theory, 62(2), (2008), 149-158.
  • [6] E.A. Gallardo-Gutirrez, A. Montes-Rodrguez, The role of the spectrum in the cyclic behavior of composition operators, Mem. Amer. Math. Soc., 167(791), (2004).
  • [7] K.-G. Grosse-Erdmann, A.P. Manguillot, Linear chaos, Universitext, Springer, London, (2011).
  • [8] B. F. Madore, R. A. Mart´ınez-Avenda˜no, Subspace hypercyclicity, J. Math. Anal. Appl., 373, (2011), 502-511.
  • [9] Q. Menet, Hypercyclic subspaces and weighted shifts, Advances in Mathematics, 255, (2015), 305-337.
  • [10] S. Rolewicz. On orbits of elements, Studia Math., 32, (1969), 17-22.
  • [11] M. D. L. Rosa, C. J. Read. A hypercyclic operator whose direct sum is not hypercyclic, J. Operator Theory, 61(2), (2009), 369-380.
  • [12] H. N. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc., 347(3), (1995), 993-1004.
  • [13] J. H. Shapiro, Notes on dynamics of linear operators, www.math.msu.edu/shapiro, (2001).
  • [14] R. K.Singh, J. S. Manhas, Composition operators on function spaces, North-Holland Mathematics Studies, NorthHolland Publishing Co., Amsterdam, (1993).
  • [15] B. Yousefi, H. Rezaei, Hypercyclic property of weighted composition operators, Proc. Amer. Math. Soc., 135(10), (2007), 3263-3271.

Hypercyclic Weighted Composition Operators on ℓ^2 (Z)

Year 2017, Volume: 14 Issue: 2, - , 01.11.2017

Abstract

A bounded linear operator T on a separable Hilbert space H is called hypercyclic if there exists
a vector x ∈ H whose orbit {T
n
x : n ∈ N} is dense in H . In this paper, we characterize the hypercyclicity
of the weighted composition operators Cu,ϕ on ℓ
2
(Z) in terms of their weight functions and symbols. First, a
necessary and sufficient condition is given for Cu,ϕ to be hypercyclic. Then, it is shown that the finite direct
sums of the hypercyclic weighted composition operators are also hypercyclic. In particular, we conclude that
the class of the hypercyclic weighted composition operators is weakly mixing. Finally, several examples are
presented to illustrate the hypercyclicity of the weighted composition operators.

References

  • [1] E. Abakumov, J. Gordon, Common hypercyclic vectors for multiples of backward shift, J. Funct. Anal., 200(2), (2003), 494-504.
  • [2] F. Bayart, E. Matheron, Dynamics of linear operators, Cambridge Tract ´ s in Mathematics, Cambridge University Press, Cambridge, (2009).
  • [3] J. B`es, Dynamics of weighted composition operators, Complex Anal. Oper. Theory, 8(1), (2014), 159-176.
  • [4] J. P. B`es, A. Peris, Hereditarily hypercyclic operators, J. Funct. Anal., 167, (1999), 94-112.
  • [5] G. Costakis, A. Manoussos, J-class weighted shifts on the space of bounded sequences of complex numbers, Integr. Equ. Oper. Theory, 62(2), (2008), 149-158.
  • [6] E.A. Gallardo-Gutirrez, A. Montes-Rodrguez, The role of the spectrum in the cyclic behavior of composition operators, Mem. Amer. Math. Soc., 167(791), (2004).
  • [7] K.-G. Grosse-Erdmann, A.P. Manguillot, Linear chaos, Universitext, Springer, London, (2011).
  • [8] B. F. Madore, R. A. Mart´ınez-Avenda˜no, Subspace hypercyclicity, J. Math. Anal. Appl., 373, (2011), 502-511.
  • [9] Q. Menet, Hypercyclic subspaces and weighted shifts, Advances in Mathematics, 255, (2015), 305-337.
  • [10] S. Rolewicz. On orbits of elements, Studia Math., 32, (1969), 17-22.
  • [11] M. D. L. Rosa, C. J. Read. A hypercyclic operator whose direct sum is not hypercyclic, J. Operator Theory, 61(2), (2009), 369-380.
  • [12] H. N. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc., 347(3), (1995), 993-1004.
  • [13] J. H. Shapiro, Notes on dynamics of linear operators, www.math.msu.edu/shapiro, (2001).
  • [14] R. K.Singh, J. S. Manhas, Composition operators on function spaces, North-Holland Mathematics Studies, NorthHolland Publishing Co., Amsterdam, (1993).
  • [15] B. Yousefi, H. Rezaei, Hypercyclic property of weighted composition operators, Proc. Amer. Math. Soc., 135(10), (2007), 3263-3271.
There are 15 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Mohammad Reza Azimi This is me

Publication Date November 1, 2017
Published in Issue Year 2017 Volume: 14 Issue: 2

Cite

APA Azimi, M. R. (2017). Hypercyclic Weighted Composition Operators on ℓ^2 (Z). Cankaya University Journal of Science and Engineering, 14(2).
AMA Azimi MR. Hypercyclic Weighted Composition Operators on ℓ^2 (Z). CUJSE. November 2017;14(2).
Chicago Azimi, Mohammad Reza. “Hypercyclic Weighted Composition Operators on ℓ^2 (Z)”. Cankaya University Journal of Science and Engineering 14, no. 2 (November 2017).
EndNote Azimi MR (November 1, 2017) Hypercyclic Weighted Composition Operators on ℓ^2 (Z). Cankaya University Journal of Science and Engineering 14 2
IEEE M. R. Azimi, “Hypercyclic Weighted Composition Operators on ℓ^2 (Z)”, CUJSE, vol. 14, no. 2, 2017.
ISNAD Azimi, Mohammad Reza. “Hypercyclic Weighted Composition Operators on ℓ^2 (Z)”. Cankaya University Journal of Science and Engineering 14/2 (November 2017).
JAMA Azimi MR. Hypercyclic Weighted Composition Operators on ℓ^2 (Z). CUJSE. 2017;14.
MLA Azimi, Mohammad Reza. “Hypercyclic Weighted Composition Operators on ℓ^2 (Z)”. Cankaya University Journal of Science and Engineering, vol. 14, no. 2, 2017.
Vancouver Azimi MR. Hypercyclic Weighted Composition Operators on ℓ^2 (Z). CUJSE. 2017;14(2).