Research Article
BibTex RIS Cite
Year 2014, Volume: 11 Issue: 2, - , 01.11.2014

Abstract

References

  • [1] D. Butnariu, E. Klement, Triangular-norm based measures, Handbook of Measure Theory, North-Holland, Amsterdam, (2002).
  • [2] S. Chen and J. Lu, Synchronization of an uncertain unified chaotic system via adaptive control, Chaos, Solitons and Fractals, 14, (2002), 643–647.
  • [3] D. Dumetrescu, Entropy of a fuzzy process, Fuzzy Sets and Systems, 55, (1993), 169–177.
  • [4] D. Dumetrescu, Entropy of fuzzy dynamical systems, Fuzzy Sets and Systems, 70, (1995), 45-57.
  • [5] M. Ebrahimi, U. Mohamadi, m-Generators of Fuzzy Dynamical Systems, Cankaya University Journal of Science and Engineering, 9, (2012), 167–182.
  • [6] A. N. Kolmogorov, New metric invariants of transitive dynamical systems and automorphisms of Lebesgue spaces, Dokl. Nauk. SSSR, 119, (1958),861–864.
  • [7] P. Malicky, B. Riecan, On the entropy of dynamical systems, Conference on Ergodic Theory and Related Topics II, (1987), 135–138.
  • [8] U. Mohamadi, Weighted information function of dynamical systems, Journal of Mathematics and Computer Science, 10, (2014), 72–77.
  • [9] M. R. Molaei, Relative semi-dynamical systems, International Journal of Uncertainty, Fuzziness and Knowledgebased Systems, 12, (2004), 237–243.
  • [10] M. R. Molaei and B. Ghazanfari, Relative probability measures, Fuzzy sets, Rough sets and Multivalued Operations and Applications, 1, (2008), 89–97.
  • [11] M. R. Molaei, Mathematical modeling of observer in physical systems, Journal of Dynamical Systems and Geometric Theories, 4(2), (2006) 183–186.
  • [12] M. R. Molaei and B. Ghazanfari, Relative entropy of relative measure preserving maps with constant observers, Journal of Dynamical Systems and Geometric Theories, 5(2), (2007) 179–191.
  • [13] M. R. Molaei, Attractors for relatives semi-dynamical systems, International Journal of Computational Cognition, 12(1), (2007), 1–10.
  • [14] M. R. Molaei, The Concept of Synchronization from the Observer Viewpoint, Cankaya University Journal of Science and Engineering, 8(2), (2011), 255–262.
  • [15] M. R. Molaei, M. H. Anvari and T. Haqiri, On relative semi-dynamical systems, Intelligent Automation and Soft Computing, 13(4), (2007), 413–421.
  • [16] R. Phelps, Lectures on Choquets Theorem, D. Van Nostrand Co. Inc., Princeton, USA, (1966).
  • [17] M. Rahimi, A. Riazi, Entropy functional for continuous systems of finite entropy, Acta Mathematica Scientia, 32(2), (2012), 775–782.
  • [18] C. Shannon, A mathematical theory of communication, Bell Syst Tech Journal, 27, (1948), 379–423.
  • [19] Ya. Sinai, On the notion of entropy of a dynamical system, Dokl. Akad. Nauk. SSSR, 125, (1959), 768–771.
  • [20] I. Tok, On the fuzzy information function, Doga Tr. J. Math., 10(2), (1986), 312–318.
  • [21] I. Tok, On the fuzzy local entropy function, E. U. J.Sci. Fac.Series A (Math), 44, (2005).
  • [22] B. M. Uzzal Afsan, C. K. Basu, Fuzzy topological entropy of fuzzy continuous functions on fuzzy topological spaces, Applied Mathematics Letters, 24, (2011) 2030–2033.
  • [23] P. Walters, An Introduction to Ergodic Theory, Springer Verlag, 1982.
  • [24] J. Lu, T. Zhou and S. Zhang, Chaos synchronization between linearly coupled chaotic systems, Chaos, Solitons and Fractals, 14, (2002), 529–541.
  • [25] J. Lu and G. Chen, A new chaotic attractor coined, International Journal of Bifurcation and Chaos, 12, (2002), 659–661.
  • [26] L. A. Zadeh, Fuzzy sets, Information and Control, 8, (1965), 338–353

Relative Entropy Functional of Relative Dynamical Systems

Year 2014, Volume: 11 Issue: 2, - , 01.11.2014

Abstract

In this paper, the notion of the relative entropy functional for relative dynamical systems on
compact metric spaces is presented using the mathematical modeling of an observer. The invariance of
the entropy of a system under topological conjugacy to the relative entropy functional is generalized. A
new version of Jacobs Theorem concerning the entropy of a dynamical system is given. At the end, the
Kolmogorov entropy from the relative entropy functional for dynamical systems from the view point of
observer χX , where X denotes the base space of the system, is extracted.

References

  • [1] D. Butnariu, E. Klement, Triangular-norm based measures, Handbook of Measure Theory, North-Holland, Amsterdam, (2002).
  • [2] S. Chen and J. Lu, Synchronization of an uncertain unified chaotic system via adaptive control, Chaos, Solitons and Fractals, 14, (2002), 643–647.
  • [3] D. Dumetrescu, Entropy of a fuzzy process, Fuzzy Sets and Systems, 55, (1993), 169–177.
  • [4] D. Dumetrescu, Entropy of fuzzy dynamical systems, Fuzzy Sets and Systems, 70, (1995), 45-57.
  • [5] M. Ebrahimi, U. Mohamadi, m-Generators of Fuzzy Dynamical Systems, Cankaya University Journal of Science and Engineering, 9, (2012), 167–182.
  • [6] A. N. Kolmogorov, New metric invariants of transitive dynamical systems and automorphisms of Lebesgue spaces, Dokl. Nauk. SSSR, 119, (1958),861–864.
  • [7] P. Malicky, B. Riecan, On the entropy of dynamical systems, Conference on Ergodic Theory and Related Topics II, (1987), 135–138.
  • [8] U. Mohamadi, Weighted information function of dynamical systems, Journal of Mathematics and Computer Science, 10, (2014), 72–77.
  • [9] M. R. Molaei, Relative semi-dynamical systems, International Journal of Uncertainty, Fuzziness and Knowledgebased Systems, 12, (2004), 237–243.
  • [10] M. R. Molaei and B. Ghazanfari, Relative probability measures, Fuzzy sets, Rough sets and Multivalued Operations and Applications, 1, (2008), 89–97.
  • [11] M. R. Molaei, Mathematical modeling of observer in physical systems, Journal of Dynamical Systems and Geometric Theories, 4(2), (2006) 183–186.
  • [12] M. R. Molaei and B. Ghazanfari, Relative entropy of relative measure preserving maps with constant observers, Journal of Dynamical Systems and Geometric Theories, 5(2), (2007) 179–191.
  • [13] M. R. Molaei, Attractors for relatives semi-dynamical systems, International Journal of Computational Cognition, 12(1), (2007), 1–10.
  • [14] M. R. Molaei, The Concept of Synchronization from the Observer Viewpoint, Cankaya University Journal of Science and Engineering, 8(2), (2011), 255–262.
  • [15] M. R. Molaei, M. H. Anvari and T. Haqiri, On relative semi-dynamical systems, Intelligent Automation and Soft Computing, 13(4), (2007), 413–421.
  • [16] R. Phelps, Lectures on Choquets Theorem, D. Van Nostrand Co. Inc., Princeton, USA, (1966).
  • [17] M. Rahimi, A. Riazi, Entropy functional for continuous systems of finite entropy, Acta Mathematica Scientia, 32(2), (2012), 775–782.
  • [18] C. Shannon, A mathematical theory of communication, Bell Syst Tech Journal, 27, (1948), 379–423.
  • [19] Ya. Sinai, On the notion of entropy of a dynamical system, Dokl. Akad. Nauk. SSSR, 125, (1959), 768–771.
  • [20] I. Tok, On the fuzzy information function, Doga Tr. J. Math., 10(2), (1986), 312–318.
  • [21] I. Tok, On the fuzzy local entropy function, E. U. J.Sci. Fac.Series A (Math), 44, (2005).
  • [22] B. M. Uzzal Afsan, C. K. Basu, Fuzzy topological entropy of fuzzy continuous functions on fuzzy topological spaces, Applied Mathematics Letters, 24, (2011) 2030–2033.
  • [23] P. Walters, An Introduction to Ergodic Theory, Springer Verlag, 1982.
  • [24] J. Lu, T. Zhou and S. Zhang, Chaos synchronization between linearly coupled chaotic systems, Chaos, Solitons and Fractals, 14, (2002), 529–541.
  • [25] J. Lu and G. Chen, A new chaotic attractor coined, International Journal of Bifurcation and Chaos, 12, (2002), 659–661.
  • [26] L. A. Zadeh, Fuzzy sets, Information and Control, 8, (1965), 338–353
There are 26 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Uosef Mohammadi This is me

Publication Date November 1, 2014
Published in Issue Year 2014 Volume: 11 Issue: 2

Cite

APA Mohammadi, U. (2014). Relative Entropy Functional of Relative Dynamical Systems. Cankaya University Journal of Science and Engineering, 11(2).
AMA Mohammadi U. Relative Entropy Functional of Relative Dynamical Systems. CUJSE. November 2014;11(2).
Chicago Mohammadi, Uosef. “Relative Entropy Functional of Relative Dynamical Systems”. Cankaya University Journal of Science and Engineering 11, no. 2 (November 2014).
EndNote Mohammadi U (November 1, 2014) Relative Entropy Functional of Relative Dynamical Systems. Cankaya University Journal of Science and Engineering 11 2
IEEE U. Mohammadi, “Relative Entropy Functional of Relative Dynamical Systems”, CUJSE, vol. 11, no. 2, 2014.
ISNAD Mohammadi, Uosef. “Relative Entropy Functional of Relative Dynamical Systems”. Cankaya University Journal of Science and Engineering 11/2 (November 2014).
JAMA Mohammadi U. Relative Entropy Functional of Relative Dynamical Systems. CUJSE. 2014;11.
MLA Mohammadi, Uosef. “Relative Entropy Functional of Relative Dynamical Systems”. Cankaya University Journal of Science and Engineering, vol. 11, no. 2, 2014.
Vancouver Mohammadi U. Relative Entropy Functional of Relative Dynamical Systems. CUJSE. 2014;11(2).