Research Article
BibTex RIS Cite

New Representation of Quaternions Lie Group and SU(2)

Year 2013, Volume: 10 Issue: 1, - , 01.05.2013

Abstract

In this paper the concept of outer product for R
4
is considered. By using this
outer product a new product on R
5
is introduced. R
5 with this product and usual addition
and scalar multiplication is an associative algebra. Via this algebra a new representation
for quaternions as a Lie group is presented. Moreover a representation for SU(2) is
deduced. 

References

  • [1] R. Abraham, J. E. Marsden and T. Ratiu, Manifolds, Tensor Analysis, and Applications, Addison-Wesley, 1983.
  • [2] A. Baker, Matrix Groups an Introduction to Lie Group Theory, Springer-Verlag, 2002.
  • [3] W. Fulton and J. Harris, Representation Theory. A First Course, Springer-Verlag, 1991.
  • [4] P. R. Girard, Quaternion, Clifford Algebras and Relativistic Physics, Birkhauser, 2007.
  • [5] B. C. Hall, Lie Groups Lie Algebras, and Representation, Springer-Verlag, 2004.
  • [6] J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, Springer-Verlag, 1999.
  • [7] D. Miliˇci´c, Lectures on Lie Groups, http://www.math.utah.edu/~milicic/Eprints/ lie.pdf, 2004.
  • [8] M. R. Molaei and M.R. Farhangdost, Lie algebras of a class of top spaces, Balkan Journal of Geometry and Its Applications 14 (2009), 46–51.
  • [9] O. Raifeartaigh, Group Structure of Gauge Theories, Cambridge University Press, 1986.
  • [10] R. Penrose and W. Rindler, Spinors and Space-Time, Cambridge University Press, 1984.
Year 2013, Volume: 10 Issue: 1, - , 01.05.2013

Abstract

References

  • [1] R. Abraham, J. E. Marsden and T. Ratiu, Manifolds, Tensor Analysis, and Applications, Addison-Wesley, 1983.
  • [2] A. Baker, Matrix Groups an Introduction to Lie Group Theory, Springer-Verlag, 2002.
  • [3] W. Fulton and J. Harris, Representation Theory. A First Course, Springer-Verlag, 1991.
  • [4] P. R. Girard, Quaternion, Clifford Algebras and Relativistic Physics, Birkhauser, 2007.
  • [5] B. C. Hall, Lie Groups Lie Algebras, and Representation, Springer-Verlag, 2004.
  • [6] J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, Springer-Verlag, 1999.
  • [7] D. Miliˇci´c, Lectures on Lie Groups, http://www.math.utah.edu/~milicic/Eprints/ lie.pdf, 2004.
  • [8] M. R. Molaei and M.R. Farhangdost, Lie algebras of a class of top spaces, Balkan Journal of Geometry and Its Applications 14 (2009), 46–51.
  • [9] O. Raifeartaigh, Group Structure of Gauge Theories, Cambridge University Press, 1986.
  • [10] R. Penrose and W. Rindler, Spinors and Space-Time, Cambridge University Press, 1984.
There are 10 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Ali Delbaznasab This is me

Mohammad Reza Molaei

Publication Date May 1, 2013
Published in Issue Year 2013 Volume: 10 Issue: 1

Cite

APA Delbaznasab, A., & Molaei, M. R. (2013). New Representation of Quaternions Lie Group and SU(2). Cankaya University Journal of Science and Engineering, 10(1).
AMA Delbaznasab A, Molaei MR. New Representation of Quaternions Lie Group and SU(2). CUJSE. May 2013;10(1).
Chicago Delbaznasab, Ali, and Mohammad Reza Molaei. “New Representation of Quaternions Lie Group and SU(2)”. Cankaya University Journal of Science and Engineering 10, no. 1 (May 2013).
EndNote Delbaznasab A, Molaei MR (May 1, 2013) New Representation of Quaternions Lie Group and SU(2). Cankaya University Journal of Science and Engineering 10 1
IEEE A. Delbaznasab and M. R. Molaei, “New Representation of Quaternions Lie Group and SU(2)”, CUJSE, vol. 10, no. 1, 2013.
ISNAD Delbaznasab, Ali - Molaei, Mohammad Reza. “New Representation of Quaternions Lie Group and SU(2)”. Cankaya University Journal of Science and Engineering 10/1 (May 2013).
JAMA Delbaznasab A, Molaei MR. New Representation of Quaternions Lie Group and SU(2). CUJSE. 2013;10.
MLA Delbaznasab, Ali and Mohammad Reza Molaei. “New Representation of Quaternions Lie Group and SU(2)”. Cankaya University Journal of Science and Engineering, vol. 10, no. 1, 2013.
Vancouver Delbaznasab A, Molaei MR. New Representation of Quaternions Lie Group and SU(2). CUJSE. 2013;10(1).