Research Article
BibTex RIS Cite

Some Applications to Lebesgue Points in Variable Exponent Lebesgue Spaces

Year 2010, Volume: 7 Issue: 2, - , 01.04.2010

Abstract

Some corollaries of Lebesgue’s regular points which are useful in the theory of
optimal control for distributed parameter systems are proved. 

References

  • [1] O. M. Buhrii and R. A. Mashiyev, Uniqueness of solutions of the parabolic variational inequality with variable exponent of nonlinearity, Nonlinear Anal.-Theor. 70 (2009), 2325–2331.
  • [2] A. V. Fursikov, Optimal Control of Distributed Systems. Theory and Applications, American Mathematical Society, Boston, MA 2000.
  • [3] O. Kov´aˇcik and J. R´akosn´ık, On spaces L^p(x) and W^k,p(x) , Czech. Math. J. 41 (1991), 592–618.
  • [4] R. Mashiyev, Some properties of variable Sobolev capacity, Taiwan. J. Math. 12 (2008), 671–678.
  • [5] A. D. Ioffe and V. M. Tikhomirov, Theory of Extremum Problems, Nauka, Moscow 1974.
  • [6] P. Harjulehto and P. H¨ast¨o, Lebesgue points in variable exponent spaces, Ann. Acad. Sci. Fenn.-M. 29 (2004), 295–306.
  • [7] M. R˚uˇziˇcka, Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, 1748, Springer-Verlag, Berlin, 2000.
  • [8] X. Fan and D. Zhao, On the spaces L^p(x) (Ω) and W^m,p(x) (Ω), J. Math. Anal. Appl. 263 (2001), 424–446.
Year 2010, Volume: 7 Issue: 2, - , 01.04.2010

Abstract

References

  • [1] O. M. Buhrii and R. A. Mashiyev, Uniqueness of solutions of the parabolic variational inequality with variable exponent of nonlinearity, Nonlinear Anal.-Theor. 70 (2009), 2325–2331.
  • [2] A. V. Fursikov, Optimal Control of Distributed Systems. Theory and Applications, American Mathematical Society, Boston, MA 2000.
  • [3] O. Kov´aˇcik and J. R´akosn´ık, On spaces L^p(x) and W^k,p(x) , Czech. Math. J. 41 (1991), 592–618.
  • [4] R. Mashiyev, Some properties of variable Sobolev capacity, Taiwan. J. Math. 12 (2008), 671–678.
  • [5] A. D. Ioffe and V. M. Tikhomirov, Theory of Extremum Problems, Nauka, Moscow 1974.
  • [6] P. Harjulehto and P. H¨ast¨o, Lebesgue points in variable exponent spaces, Ann. Acad. Sci. Fenn.-M. 29 (2004), 295–306.
  • [7] M. R˚uˇziˇcka, Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, 1748, Springer-Verlag, Berlin, 2000.
  • [8] X. Fan and D. Zhao, On the spaces L^p(x) (Ω) and W^m,p(x) (Ω), J. Math. Anal. Appl. 263 (2001), 424–446.
There are 8 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Rabil A. Mashiyev This is me

Publication Date April 1, 2010
Published in Issue Year 2010 Volume: 7 Issue: 2

Cite

APA Mashiyev, R. A. (2010). Some Applications to Lebesgue Points in Variable Exponent Lebesgue Spaces. Cankaya University Journal of Science and Engineering, 7(2).
AMA Mashiyev RA. Some Applications to Lebesgue Points in Variable Exponent Lebesgue Spaces. CUJSE. April 2010;7(2).
Chicago Mashiyev, Rabil A. “Some Applications to Lebesgue Points in Variable Exponent Lebesgue Spaces”. Cankaya University Journal of Science and Engineering 7, no. 2 (April 2010).
EndNote Mashiyev RA (April 1, 2010) Some Applications to Lebesgue Points in Variable Exponent Lebesgue Spaces. Cankaya University Journal of Science and Engineering 7 2
IEEE R. A. Mashiyev, “Some Applications to Lebesgue Points in Variable Exponent Lebesgue Spaces”, CUJSE, vol. 7, no. 2, 2010.
ISNAD Mashiyev, Rabil A. “Some Applications to Lebesgue Points in Variable Exponent Lebesgue Spaces”. Cankaya University Journal of Science and Engineering 7/2 (April 2010).
JAMA Mashiyev RA. Some Applications to Lebesgue Points in Variable Exponent Lebesgue Spaces. CUJSE. 2010;7.
MLA Mashiyev, Rabil A. “Some Applications to Lebesgue Points in Variable Exponent Lebesgue Spaces”. Cankaya University Journal of Science and Engineering, vol. 7, no. 2, 2010.
Vancouver Mashiyev RA. Some Applications to Lebesgue Points in Variable Exponent Lebesgue Spaces. CUJSE. 2010;7(2).