Research Article
BibTex RIS Cite

On the Classes of (n, m) Power (D, A)-Normal and (n,m) Power (D, A)-Quasinormal Operators in Semi-Hilbertian Space

Year 2021, Volume: 18 Issue: 2, 101 - 116, 01.11.2021

Abstract

The concept of (๐‘›, ๐‘š) power ๐ท-normal operators on Hilbertian space is defined by Ould Ahmed Mahmoud Sid Ahmed and Ould Beinane Sid Ahmed in [1]. In this paper we introduce a new classes of operators on semi-Hilbertian space (โ„‹, โˆฅ. โˆฅ๐ด) called (๐‘›, ๐‘š) power-(๐ท, ๐ด)-normal denoted [(๐‘›, ๐‘š)๐ท๐‘]๐ด and (๐‘›, ๐‘š) power-(๐ท, ๐ด)-quasi-normal denoted [(๐‘›, ๐‘š)๐ท๐‘„๐‘]๐ด associated with a Drazin invertible operator using its Drazin inverse. Some properties of [(๐‘›, ๐‘š)๐ท๐‘]๐ด and [(๐‘›, ๐‘š)๐ท๐‘„๐‘]๐ด are investigated and some examples are also given. An operator ๐‘‡ โˆˆ โ„ฌ๐ด (โ„‹) is said to be (n, m) power-(๐ท, ๐ด)- normal for some positive operator ๐ด and for some positive integers ๐‘› and ๐‘š if (๐‘‡๐ท)๐‘›(๐‘‡โ‹•)๐‘š = (๐‘‡โ‹•)๐‘š(๐‘‡๐ท)๐‘›.

Thanks

The authors would like to express their gratitude to the referee. We are very grateful for his help, his careful observations, and his careful reading, which led to the improvement of the article.

References

  • [1] J.B. Conway, A Course in Functional Analysis, Springer Verlag, Berlin -Heildelberg-New York, 1990.
  • [2] C. R. Putnam, โ€œOn normal operators in Hilbert space,โ€ American Journal of Mathematics, vol. 73, pp. 357-362, 1951.
  • [3] O. A. Mahmoud Sid Ahmed and O. B. Sid Ahmed, โ€œOn the Classes of (๐‘›, ๐‘š) power-๐ท-Normal and(๐‘›, ๐‘š)power-๐ท- Quasinormal,โ€ Operators And Matrices, vol. 13, no. 3, pp. 705-73, 2019.
  • [4] M. L. Arias, G. Corach, and M. C. Gonzalez, โ€œPartial isometries in semi- Hilbertian spaces,โ€ Linear Algebra and its Applications, vol. 428, no. 7, pp. 1460-1475, 2008.
  • [5] M. L. Arias, G. Corach, M. C. Gonzalez, โ€œMetric properties of projections in semi- Hilbertian spaces,โ€ Integral Equations Operator Theory , vol. 62, no. 1, pp. 11-28, 2008.
  • [6] M. L. Arias, G. Corach, and M. C. Gonzalez, โ€œLifting properties in operator ranges,โ€ Acta Scientiarum Mathematicarum (Szeged), vol. 75, no. (3-4), pp. 635-653, 2009.
  • [7] O. A. Mahmoud Sid Ahmed and A. Saddi, โ€œA-m-Isomertic operators in semi-Hilbertian spaces,โ€ Linear Algebra and its Applications, vol. 436, pp. 3930-3942, 2012.
  • [8] Ould Ahmed Mahmoud Sid Ahmed and Abdelkader Benali, โ€œHyponormal And ๐‘˜-Quasi-hyponormal Operators On Semi-Hilbertian Spaces,โ€ The Australian Journal of Mathematical Analysis and Applications, vol. 13, no. 1, pp. 1- 22, 2016.
  • [9] A. Saddi, โ€œ A-Normal operators in Semi-Hilbertian spaces,โ€ The Australian Journal of Mathematical Analysis and Applications, vol. 9, no. 1, pp. 1-12, 2012.
  • [10] S. H. Jah, โ€œClass Of (๐ด, ๐‘›) power Quasi-normal Opertors in Semi Hilbertian Space,โ€ Internationl Journal of Pure and Applied Mathematics, vol. 93, no. 1, pp. 61-83, 2014.
  • [11] R. G. Douglas, โ€œOn majorization, factorization and range inclusion of operators in Hilbert space,โ€ Proceedings of the American Mathematical Society, vol. 17, pp. 413-416, 1966.
  • [12] S. R. Caradus, โ€œOperator Theory of the Generalized Inverse,โ€ Queens Papers in Pure and Applied Math, vol. 38, 2004.
  • [13] C. F. King, โ€œA note of Drazin inverses,โ€ Pacific Journal of Mathematics, vol. 70, no. 2, pp. 383โ€“390, 1977.
  • [14] S. L. Campbell and C. D. Meyer, โ€œGeneralized Inverses of Linear Transformations,โ€ Society for Industrial and Applied Mathematics, 2009.
  • [15] D.S. Djordjevic and V. Rakocevic, โ€œLectures on Generalized Inverse,โ€ Faculty of Science and Mathematics, University of Nice, 2008.
  • [16] M. Dana and R. Yousfi, โ€œOn the classes of ๐ท-normal operators and ๐ท-quasi-normal operators,โ€ Operators and Matrices, vol. 12, no. 2, pp. 465โ€“487, 2018.
  • [17] G. Wang, Y. Wei, and S. Qiao, โ€œGeneralized Inverses: Theory and Computations,โ€ Graduate Series in Mathematics, vol. 5, Beijing, 2004.
  • [18] A. A. S. Jibril, โ€œOn-power Normal Operators,โ€ The Journal for Science and Engineering, vol. 33, no. 2A, pp. 247- 251, 2008.
  • [19] O. A. M. Sid Ahmed, โ€œOn the class of n-power quasi-normal operators on Hilbert spaces,โ€ Bulletin of Mathematical Analysis and Applications, vol. 3, no. 2, pp. 213โ€“228, 2011.
Year 2021, Volume: 18 Issue: 2, 101 - 116, 01.11.2021

Abstract

References

  • [1] J.B. Conway, A Course in Functional Analysis, Springer Verlag, Berlin -Heildelberg-New York, 1990.
  • [2] C. R. Putnam, โ€œOn normal operators in Hilbert space,โ€ American Journal of Mathematics, vol. 73, pp. 357-362, 1951.
  • [3] O. A. Mahmoud Sid Ahmed and O. B. Sid Ahmed, โ€œOn the Classes of (๐‘›, ๐‘š) power-๐ท-Normal and(๐‘›, ๐‘š)power-๐ท- Quasinormal,โ€ Operators And Matrices, vol. 13, no. 3, pp. 705-73, 2019.
  • [4] M. L. Arias, G. Corach, and M. C. Gonzalez, โ€œPartial isometries in semi- Hilbertian spaces,โ€ Linear Algebra and its Applications, vol. 428, no. 7, pp. 1460-1475, 2008.
  • [5] M. L. Arias, G. Corach, M. C. Gonzalez, โ€œMetric properties of projections in semi- Hilbertian spaces,โ€ Integral Equations Operator Theory , vol. 62, no. 1, pp. 11-28, 2008.
  • [6] M. L. Arias, G. Corach, and M. C. Gonzalez, โ€œLifting properties in operator ranges,โ€ Acta Scientiarum Mathematicarum (Szeged), vol. 75, no. (3-4), pp. 635-653, 2009.
  • [7] O. A. Mahmoud Sid Ahmed and A. Saddi, โ€œA-m-Isomertic operators in semi-Hilbertian spaces,โ€ Linear Algebra and its Applications, vol. 436, pp. 3930-3942, 2012.
  • [8] Ould Ahmed Mahmoud Sid Ahmed and Abdelkader Benali, โ€œHyponormal And ๐‘˜-Quasi-hyponormal Operators On Semi-Hilbertian Spaces,โ€ The Australian Journal of Mathematical Analysis and Applications, vol. 13, no. 1, pp. 1- 22, 2016.
  • [9] A. Saddi, โ€œ A-Normal operators in Semi-Hilbertian spaces,โ€ The Australian Journal of Mathematical Analysis and Applications, vol. 9, no. 1, pp. 1-12, 2012.
  • [10] S. H. Jah, โ€œClass Of (๐ด, ๐‘›) power Quasi-normal Opertors in Semi Hilbertian Space,โ€ Internationl Journal of Pure and Applied Mathematics, vol. 93, no. 1, pp. 61-83, 2014.
  • [11] R. G. Douglas, โ€œOn majorization, factorization and range inclusion of operators in Hilbert space,โ€ Proceedings of the American Mathematical Society, vol. 17, pp. 413-416, 1966.
  • [12] S. R. Caradus, โ€œOperator Theory of the Generalized Inverse,โ€ Queens Papers in Pure and Applied Math, vol. 38, 2004.
  • [13] C. F. King, โ€œA note of Drazin inverses,โ€ Pacific Journal of Mathematics, vol. 70, no. 2, pp. 383โ€“390, 1977.
  • [14] S. L. Campbell and C. D. Meyer, โ€œGeneralized Inverses of Linear Transformations,โ€ Society for Industrial and Applied Mathematics, 2009.
  • [15] D.S. Djordjevic and V. Rakocevic, โ€œLectures on Generalized Inverse,โ€ Faculty of Science and Mathematics, University of Nice, 2008.
  • [16] M. Dana and R. Yousfi, โ€œOn the classes of ๐ท-normal operators and ๐ท-quasi-normal operators,โ€ Operators and Matrices, vol. 12, no. 2, pp. 465โ€“487, 2018.
  • [17] G. Wang, Y. Wei, and S. Qiao, โ€œGeneralized Inverses: Theory and Computations,โ€ Graduate Series in Mathematics, vol. 5, Beijing, 2004.
  • [18] A. A. S. Jibril, โ€œOn-power Normal Operators,โ€ The Journal for Science and Engineering, vol. 33, no. 2A, pp. 247- 251, 2008.
  • [19] O. A. M. Sid Ahmed, โ€œOn the class of n-power quasi-normal operators on Hilbert spaces,โ€ Bulletin of Mathematical Analysis and Applications, vol. 3, no. 2, pp. 213โ€“228, 2011.
There are 19 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Djilali Bekai This is me 0000-0003-0090-0028

Benali Abdelkader 0000-0001-6205-3499

Hakem Alฤฑ

Publication Date November 1, 2021
Published in Issue Year 2021 Volume: 18 Issue: 2

Cite

APA Bekai, D., Abdelkader, B., & Alฤฑ, H. (2021). On the Classes of (n, m) Power (D, A)-Normal and (n,m) Power (D, A)-Quasinormal Operators in Semi-Hilbertian Space. Cankaya University Journal of Science and Engineering, 18(2), 101-116.
AMA Bekai D, Abdelkader B, Alฤฑ H. On the Classes of (n, m) Power (D, A)-Normal and (n,m) Power (D, A)-Quasinormal Operators in Semi-Hilbertian Space. CUJSE. November 2021;18(2):101-116.
Chicago Bekai, Djilali, Benali Abdelkader, and Hakem Alฤฑ. โ€œOn the Classes of (n, M) Power (D, A)-Normal and (n,m) Power (D, A)-Quasinormal Operators in Semi-Hilbertian Spaceโ€. Cankaya University Journal of Science and Engineering 18, no. 2 (November 2021): 101-16.
EndNote Bekai D, Abdelkader B, Alฤฑ H (November 1, 2021) On the Classes of (n, m) Power (D, A)-Normal and (n,m) Power (D, A)-Quasinormal Operators in Semi-Hilbertian Space. Cankaya University Journal of Science and Engineering 18 2 101โ€“116.
IEEE D. Bekai, B. Abdelkader, and H. Alฤฑ, โ€œOn the Classes of (n, m) Power (D, A)-Normal and (n,m) Power (D, A)-Quasinormal Operators in Semi-Hilbertian Spaceโ€, CUJSE, vol. 18, no. 2, pp. 101โ€“116, 2021.
ISNAD Bekai, Djilali et al. โ€œOn the Classes of (n, M) Power (D, A)-Normal and (n,m) Power (D, A)-Quasinormal Operators in Semi-Hilbertian Spaceโ€. Cankaya University Journal of Science and Engineering 18/2 (November 2021), 101-116.
JAMA Bekai D, Abdelkader B, Alฤฑ H. On the Classes of (n, m) Power (D, A)-Normal and (n,m) Power (D, A)-Quasinormal Operators in Semi-Hilbertian Space. CUJSE. 2021;18:101โ€“116.
MLA Bekai, Djilali et al. โ€œOn the Classes of (n, M) Power (D, A)-Normal and (n,m) Power (D, A)-Quasinormal Operators in Semi-Hilbertian Spaceโ€. Cankaya University Journal of Science and Engineering, vol. 18, no. 2, 2021, pp. 101-16.
Vancouver Bekai D, Abdelkader B, Alฤฑ H. On the Classes of (n, m) Power (D, A)-Normal and (n,m) Power (D, A)-Quasinormal Operators in Semi-Hilbertian Space. CUJSE. 2021;18(2):101-16.