Year 2021,
Volume: 18 Issue: 2, 101 - 116, 01.11.2021
Djilali Bekai
Benali Abdelkader
,
Hakem Alฤฑ
References
-
[1] J.B. Conway, A Course in Functional Analysis, Springer Verlag, Berlin -Heildelberg-New York, 1990.
-
[2] C. R. Putnam, โOn normal operators in Hilbert space,โ American Journal of Mathematics, vol. 73, pp. 357-362, 1951.
-
[3] O. A. Mahmoud Sid Ahmed and O. B. Sid Ahmed, โOn the Classes of (๐, ๐) power-๐ท-Normal and(๐, ๐)power-๐ท-
Quasinormal,โ Operators And Matrices, vol. 13, no. 3, pp. 705-73, 2019.
-
[4] M. L. Arias, G. Corach, and M. C. Gonzalez, โPartial isometries in semi- Hilbertian spaces,โ Linear Algebra and its
Applications, vol. 428, no. 7, pp. 1460-1475, 2008.
-
[5] M. L. Arias, G. Corach, M. C. Gonzalez, โMetric properties of projections in semi- Hilbertian spaces,โ Integral
Equations Operator Theory , vol. 62, no. 1, pp. 11-28, 2008.
-
[6] M. L. Arias, G. Corach, and M. C. Gonzalez, โLifting properties in operator ranges,โ Acta Scientiarum
Mathematicarum (Szeged), vol. 75, no. (3-4), pp. 635-653, 2009.
-
[7] O. A. Mahmoud Sid Ahmed and A. Saddi, โA-m-Isomertic operators in semi-Hilbertian spaces,โ Linear Algebra
and its Applications, vol. 436, pp. 3930-3942, 2012.
-
[8] Ould Ahmed Mahmoud Sid Ahmed and Abdelkader Benali, โHyponormal And ๐-Quasi-hyponormal Operators On
Semi-Hilbertian Spaces,โ The Australian Journal of Mathematical Analysis and Applications, vol. 13, no. 1, pp. 1-
22, 2016.
-
[9] A. Saddi, โ A-Normal operators in Semi-Hilbertian spaces,โ The Australian Journal of Mathematical Analysis and
Applications, vol. 9, no. 1, pp. 1-12, 2012.
-
[10] S. H. Jah, โClass Of (๐ด, ๐) power Quasi-normal Opertors in Semi Hilbertian Space,โ Internationl Journal of Pure
and Applied Mathematics, vol. 93, no. 1, pp. 61-83, 2014.
-
[11] R. G. Douglas, โOn majorization, factorization and range inclusion of operators in Hilbert space,โ Proceedings of the
American Mathematical Society, vol. 17, pp. 413-416, 1966.
-
[12] S. R. Caradus, โOperator Theory of the Generalized Inverse,โ Queens Papers in Pure and Applied Math, vol. 38,
2004.
-
[13] C. F. King, โA note of Drazin inverses,โ Pacific Journal of Mathematics, vol. 70, no. 2, pp. 383โ390, 1977.
-
[14] S. L. Campbell and C. D. Meyer, โGeneralized Inverses of Linear Transformations,โ Society for Industrial and
Applied Mathematics, 2009.
-
[15] D.S. Djordjevic and V. Rakocevic, โLectures on Generalized Inverse,โ Faculty of Science and Mathematics,
University of Nice, 2008.
-
[16] M. Dana and R. Yousfi, โOn the classes of ๐ท-normal operators and ๐ท-quasi-normal operators,โ Operators and
Matrices, vol. 12, no. 2, pp. 465โ487, 2018.
-
[17] G. Wang, Y. Wei, and S. Qiao, โGeneralized Inverses: Theory and Computations,โ Graduate Series in Mathematics,
vol. 5, Beijing, 2004.
-
[18] A. A. S. Jibril, โOn-power Normal Operators,โ The Journal for Science and Engineering, vol. 33, no. 2A, pp. 247-
251, 2008.
-
[19] O. A. M. Sid Ahmed, โOn the class of n-power quasi-normal operators on Hilbert spaces,โ Bulletin of Mathematical
Analysis and Applications, vol. 3, no. 2, pp. 213โ228, 2011.
On the Classes of (n, m) Power (D, A)-Normal and (n,m) Power (D, A)-Quasinormal Operators in Semi-Hilbertian Space
Year 2021,
Volume: 18 Issue: 2, 101 - 116, 01.11.2021
Djilali Bekai
Benali Abdelkader
,
Hakem Alฤฑ
Abstract
The concept of (๐, ๐) power ๐ท-normal operators on Hilbertian space is defined by Ould Ahmed Mahmoud Sid Ahmed and Ould Beinane Sid Ahmed in [1]. In this paper we introduce a new classes of operators on semi-Hilbertian space (โ, โฅ. โฅ๐ด) called (๐, ๐) power-(๐ท, ๐ด)-normal denoted [(๐, ๐)๐ท๐]๐ด and (๐, ๐) power-(๐ท, ๐ด)-quasi-normal denoted [(๐, ๐)๐ท๐๐]๐ด associated with a Drazin invertible operator using its Drazin inverse. Some properties of [(๐, ๐)๐ท๐]๐ด and [(๐, ๐)๐ท๐๐]๐ด are investigated and some examples are also given. An operator ๐ โ โฌ๐ด (โ) is said to be (n, m) power-(๐ท, ๐ด)- normal for some positive operator ๐ด and for some positive integers ๐ and ๐ if (๐๐ท)๐(๐โ)๐ = (๐โ)๐(๐๐ท)๐.
Thanks
The authors would like to express their gratitude to the referee. We are very grateful for his help, his careful
observations, and his careful reading, which led to the improvement of the article.
References
-
[1] J.B. Conway, A Course in Functional Analysis, Springer Verlag, Berlin -Heildelberg-New York, 1990.
-
[2] C. R. Putnam, โOn normal operators in Hilbert space,โ American Journal of Mathematics, vol. 73, pp. 357-362, 1951.
-
[3] O. A. Mahmoud Sid Ahmed and O. B. Sid Ahmed, โOn the Classes of (๐, ๐) power-๐ท-Normal and(๐, ๐)power-๐ท-
Quasinormal,โ Operators And Matrices, vol. 13, no. 3, pp. 705-73, 2019.
-
[4] M. L. Arias, G. Corach, and M. C. Gonzalez, โPartial isometries in semi- Hilbertian spaces,โ Linear Algebra and its
Applications, vol. 428, no. 7, pp. 1460-1475, 2008.
-
[5] M. L. Arias, G. Corach, M. C. Gonzalez, โMetric properties of projections in semi- Hilbertian spaces,โ Integral
Equations Operator Theory , vol. 62, no. 1, pp. 11-28, 2008.
-
[6] M. L. Arias, G. Corach, and M. C. Gonzalez, โLifting properties in operator ranges,โ Acta Scientiarum
Mathematicarum (Szeged), vol. 75, no. (3-4), pp. 635-653, 2009.
-
[7] O. A. Mahmoud Sid Ahmed and A. Saddi, โA-m-Isomertic operators in semi-Hilbertian spaces,โ Linear Algebra
and its Applications, vol. 436, pp. 3930-3942, 2012.
-
[8] Ould Ahmed Mahmoud Sid Ahmed and Abdelkader Benali, โHyponormal And ๐-Quasi-hyponormal Operators On
Semi-Hilbertian Spaces,โ The Australian Journal of Mathematical Analysis and Applications, vol. 13, no. 1, pp. 1-
22, 2016.
-
[9] A. Saddi, โ A-Normal operators in Semi-Hilbertian spaces,โ The Australian Journal of Mathematical Analysis and
Applications, vol. 9, no. 1, pp. 1-12, 2012.
-
[10] S. H. Jah, โClass Of (๐ด, ๐) power Quasi-normal Opertors in Semi Hilbertian Space,โ Internationl Journal of Pure
and Applied Mathematics, vol. 93, no. 1, pp. 61-83, 2014.
-
[11] R. G. Douglas, โOn majorization, factorization and range inclusion of operators in Hilbert space,โ Proceedings of the
American Mathematical Society, vol. 17, pp. 413-416, 1966.
-
[12] S. R. Caradus, โOperator Theory of the Generalized Inverse,โ Queens Papers in Pure and Applied Math, vol. 38,
2004.
-
[13] C. F. King, โA note of Drazin inverses,โ Pacific Journal of Mathematics, vol. 70, no. 2, pp. 383โ390, 1977.
-
[14] S. L. Campbell and C. D. Meyer, โGeneralized Inverses of Linear Transformations,โ Society for Industrial and
Applied Mathematics, 2009.
-
[15] D.S. Djordjevic and V. Rakocevic, โLectures on Generalized Inverse,โ Faculty of Science and Mathematics,
University of Nice, 2008.
-
[16] M. Dana and R. Yousfi, โOn the classes of ๐ท-normal operators and ๐ท-quasi-normal operators,โ Operators and
Matrices, vol. 12, no. 2, pp. 465โ487, 2018.
-
[17] G. Wang, Y. Wei, and S. Qiao, โGeneralized Inverses: Theory and Computations,โ Graduate Series in Mathematics,
vol. 5, Beijing, 2004.
-
[18] A. A. S. Jibril, โOn-power Normal Operators,โ The Journal for Science and Engineering, vol. 33, no. 2A, pp. 247-
251, 2008.
-
[19] O. A. M. Sid Ahmed, โOn the class of n-power quasi-normal operators on Hilbert spaces,โ Bulletin of Mathematical
Analysis and Applications, vol. 3, no. 2, pp. 213โ228, 2011.