Research Article
BibTex RIS Cite

Year 2025, Volume: 21 Issue: 2, 159 - 168, 27.06.2025
https://doi.org/10.18466/cbayarfbe.1479195

Abstract

References

  • [1]. Demiriz, S., Erdem, S., 2024. Mersenne matrix operator and its application in p−summable sequence space. Communications in Advanced Mathematical Sciences; 7(1): 42-55.
  • [2]. Devletli U., Kara, M.I., 2023. New Banach sequence spaces defined by Jordan totient function. Communications in Advanced Mathematical Sciences; 6(4): 211-225.
  • [3]. Ellidokuzoğlu, H.B., Demiriz, S., Köseoğlu, A., 2018. On the paranormed binomial sequence spaces. Universal Journal of Mathematics and Applications; 1(3): 137-147.
  • [4]. Hazar Güleç, G.C., 2019. Characterization of some classes of compact and matrix operators on the sequence spaces of Cesàro means. Operators and Matrices; 13(3): 809-822.
  • [5]. Hazar Güleç, G.C., 2020. Compact matrix operators on absolute Cesàro spaces. Numerical Functional Analysis and Optimization; 41(1): 1-15.
  • [6]. Hazar Güleç, G.C., Sarıgöl, M.A., 2020. Matrix mappings and norms on the absolute Cesàro and weighted spaces. Quaestiones Mathematicae; 43(1): 117-130.
  • [7]. İlkhan M., Bayrakdar, M.A., 2021. A study on matrix domain of Riesz-Euler totient matrix in the space of p-absolutely summable sequences. Communications in Advanced Mathematical Sciences; 4(1): 14-25.
  • [8]. Polat, H., 2018. Some new Cauchy sequence spaces, Universal Journal of Mathematics and Applications; 1(4): 267-272.
  • [9]. Sezer, S.A., Çanak, İ., 2023. On the convergence of weighted mean summable improper integrals over R≥0. The Journal of Analysis; 31(2): 1029-1039.
  • [10]. Sezer, S.A., Çanak, İ., 2023. Tauberian theorems concerning weighted mean summable integrals. Periodica Mathematica Hungarica; 87: 315-323.
  • [11]. Önder, Z., Savaş, E., Çanak, İ., 2023. On the weighted generator of double sequences and its Tauberian conditions. Advances in Operator Theory; 8(3): 38.
  • [12]. Başar, F., Savaşcı, M.Y., Double Sequence Spaces and Four-Dimensional Matrices (1st ed.). Chapman and Hall/CRC, 2022.
  • [13]. Bodur, O., Güleç, C.H., 2024. Characterizations of some new classes of four-dimensional matrices on the double series spaces of first order Cesàro means. Mathematical Sciences and Applications E-Notes; 12(4): 196-206.
  • [14]. Ceylan, A.I., Güleç, C.H., 2024. A new double series space derived by factorable matrix and four-dimensional matrix transformations. AIMS Mathematics; 9(11): 30922-30938.
  • [15]. Sarıgöl, M.A.,2023. Four dimensional matrix mappings on double summable spaces. Filomat; 37: 1277-1290.
  • [16]. Sarıgöl, M. A., 2023. Four dimensional matrix mappings and applications. Kuwait Journal of Science; 50(2A): 1-12.
  • [17]. Bromwich, T. J., An Introduction to the Theory of Infinite Series; Macmillan, New York, 1965.
  • [18]. Zeltser, M, 2022. On conservative matrix methods for double sequence spaces. Acta Mathematica Hungarica; 95(3): 225-242.
  • [19]. Hardy, G. H., 1917. On the convergence of certain multiple series. Proceedings of the Cambridge Philosophical Society; 19: 86-95.
  • [20]. Móricz, F., 1991. Extensions of the spaces c and c_0 from single to double sequences. Acta Mathematica Hungarica; 57, (1-2): 129-136.
  • [21]. Móricz, F., Rhoades, B.E., 1988. Almost convergence of double sequences and strong regularity of summability matrices. Mathematical Proceedings of the Cambridge Philosophical Society; 104 (2): 283-294.
  • [22]. Mursaleen, M., 2004. Almost strongly regular matrices and a core theorem for double sequences. Journal of Mathematical Analysis and Applications; 293(2): 523–531.
  • [23]. Mursaleen, M., Başar, F., 2014. Domain of Cesàro mean of order one in some spaces of double sequences. Studia Scientiarum Mathematicarum Hungarica; 51: 335-356.
  • [24]. Demiriz, S., Duyar, O., 2015. Domain of difference matrix of order one in some spaces of double sequences. Gulf Journal of Mathematics; 3(3): 85-100.
  • [25]. Demiriz, S., Erdem, S., 2020. Domain of Euler-totient matrix operator in the space L_p. Korean Journal of Mathematics; 28(2): 361-378.
  • [26]. Pringsheim, A., 1900. Zur theorie der zweifach unendlichen Zahlenfolgen. Mathematische Annalen; 53: 289-321.
  • [27]. Boos, J., Classical and Modern Methods in Summability; Oxford University Press, New York, 2000.
  • [28]. Başar, F., Sever, Y., 2009. The space L_k of double sequences. Mathematical Journal of Okayama University; 51: 149–157.
  • [29]. Yeşilkayagil, M., Başar, F., 2018. Domain of Riesz mean in some spaces of double sequences. Indagationes Mathematicae; 29(3): 1009-1029.
  • [30]. Alotaibi, A.M., Çakan, C., 2012. The Riesz convergence and Riesz core of double sequences. Journal of Inequalities and Applications; 2012, 56.
  • [31]. Sarıgöl, M.A., 2021. On equivalence of absolute double weighted mean methods. Quaestiones Mathematicae; 44(6): 755-764.
  • [32]. Altay, B., Başar, F., 2006. Some paranormed Riesz sequence spaces of non-absolute type. Southeast Asian Bulletin of Mathematics; 30(4): 591-608.
  • [33]. Başarır, M., Kara, E.E., 2011. On compact operators on the Riesz Bm-difference sequence space. Iranian Journal of Science and Technology (Sciences); 35(4): 279-285.
  • [34]. Sarıgöl, M.A., 2016. Norms and compactness of operators on absolute weighted mean summable series. Kuwait Journal of Science; 43(4): 68-74.
  • [35]. Yeşilkayagil, M., Başar, F., 2017. On the domain of Riesz mean in the space L_k^*. Filomat; 31(4): 925-940.

Four Dimensional Matrix Operators on the Double Series Spaces of Weighted Means

Year 2025, Volume: 21 Issue: 2, 159 - 168, 27.06.2025
https://doi.org/10.18466/cbayarfbe.1479195

Abstract

The main purpose in this study is to investigate some topological and algebraic properties of the double series space |N ̅_(p,q) |_k defined by the absolute double weighted summability methods for k≥1. Beside this, we determine the α-dual of the double series space |N ̅_(p,q) |_1 and the β(bp)- and γ- duals of the double series space |N ̅_(p,q) |_k for k≥1. Finally, we characterize some new four dimensional matrix transformation classes (|N ̅_(p,q) |_k,υ), (|N ̅_(p,q) |_1,υ) and (|N ̅_(p,q) |_1,L_k ), where υ denotes any spaces of double sequences "M" _u and C_p. Hence, we extend some results about weighted means to double sequences.

References

  • [1]. Demiriz, S., Erdem, S., 2024. Mersenne matrix operator and its application in p−summable sequence space. Communications in Advanced Mathematical Sciences; 7(1): 42-55.
  • [2]. Devletli U., Kara, M.I., 2023. New Banach sequence spaces defined by Jordan totient function. Communications in Advanced Mathematical Sciences; 6(4): 211-225.
  • [3]. Ellidokuzoğlu, H.B., Demiriz, S., Köseoğlu, A., 2018. On the paranormed binomial sequence spaces. Universal Journal of Mathematics and Applications; 1(3): 137-147.
  • [4]. Hazar Güleç, G.C., 2019. Characterization of some classes of compact and matrix operators on the sequence spaces of Cesàro means. Operators and Matrices; 13(3): 809-822.
  • [5]. Hazar Güleç, G.C., 2020. Compact matrix operators on absolute Cesàro spaces. Numerical Functional Analysis and Optimization; 41(1): 1-15.
  • [6]. Hazar Güleç, G.C., Sarıgöl, M.A., 2020. Matrix mappings and norms on the absolute Cesàro and weighted spaces. Quaestiones Mathematicae; 43(1): 117-130.
  • [7]. İlkhan M., Bayrakdar, M.A., 2021. A study on matrix domain of Riesz-Euler totient matrix in the space of p-absolutely summable sequences. Communications in Advanced Mathematical Sciences; 4(1): 14-25.
  • [8]. Polat, H., 2018. Some new Cauchy sequence spaces, Universal Journal of Mathematics and Applications; 1(4): 267-272.
  • [9]. Sezer, S.A., Çanak, İ., 2023. On the convergence of weighted mean summable improper integrals over R≥0. The Journal of Analysis; 31(2): 1029-1039.
  • [10]. Sezer, S.A., Çanak, İ., 2023. Tauberian theorems concerning weighted mean summable integrals. Periodica Mathematica Hungarica; 87: 315-323.
  • [11]. Önder, Z., Savaş, E., Çanak, İ., 2023. On the weighted generator of double sequences and its Tauberian conditions. Advances in Operator Theory; 8(3): 38.
  • [12]. Başar, F., Savaşcı, M.Y., Double Sequence Spaces and Four-Dimensional Matrices (1st ed.). Chapman and Hall/CRC, 2022.
  • [13]. Bodur, O., Güleç, C.H., 2024. Characterizations of some new classes of four-dimensional matrices on the double series spaces of first order Cesàro means. Mathematical Sciences and Applications E-Notes; 12(4): 196-206.
  • [14]. Ceylan, A.I., Güleç, C.H., 2024. A new double series space derived by factorable matrix and four-dimensional matrix transformations. AIMS Mathematics; 9(11): 30922-30938.
  • [15]. Sarıgöl, M.A.,2023. Four dimensional matrix mappings on double summable spaces. Filomat; 37: 1277-1290.
  • [16]. Sarıgöl, M. A., 2023. Four dimensional matrix mappings and applications. Kuwait Journal of Science; 50(2A): 1-12.
  • [17]. Bromwich, T. J., An Introduction to the Theory of Infinite Series; Macmillan, New York, 1965.
  • [18]. Zeltser, M, 2022. On conservative matrix methods for double sequence spaces. Acta Mathematica Hungarica; 95(3): 225-242.
  • [19]. Hardy, G. H., 1917. On the convergence of certain multiple series. Proceedings of the Cambridge Philosophical Society; 19: 86-95.
  • [20]. Móricz, F., 1991. Extensions of the spaces c and c_0 from single to double sequences. Acta Mathematica Hungarica; 57, (1-2): 129-136.
  • [21]. Móricz, F., Rhoades, B.E., 1988. Almost convergence of double sequences and strong regularity of summability matrices. Mathematical Proceedings of the Cambridge Philosophical Society; 104 (2): 283-294.
  • [22]. Mursaleen, M., 2004. Almost strongly regular matrices and a core theorem for double sequences. Journal of Mathematical Analysis and Applications; 293(2): 523–531.
  • [23]. Mursaleen, M., Başar, F., 2014. Domain of Cesàro mean of order one in some spaces of double sequences. Studia Scientiarum Mathematicarum Hungarica; 51: 335-356.
  • [24]. Demiriz, S., Duyar, O., 2015. Domain of difference matrix of order one in some spaces of double sequences. Gulf Journal of Mathematics; 3(3): 85-100.
  • [25]. Demiriz, S., Erdem, S., 2020. Domain of Euler-totient matrix operator in the space L_p. Korean Journal of Mathematics; 28(2): 361-378.
  • [26]. Pringsheim, A., 1900. Zur theorie der zweifach unendlichen Zahlenfolgen. Mathematische Annalen; 53: 289-321.
  • [27]. Boos, J., Classical and Modern Methods in Summability; Oxford University Press, New York, 2000.
  • [28]. Başar, F., Sever, Y., 2009. The space L_k of double sequences. Mathematical Journal of Okayama University; 51: 149–157.
  • [29]. Yeşilkayagil, M., Başar, F., 2018. Domain of Riesz mean in some spaces of double sequences. Indagationes Mathematicae; 29(3): 1009-1029.
  • [30]. Alotaibi, A.M., Çakan, C., 2012. The Riesz convergence and Riesz core of double sequences. Journal of Inequalities and Applications; 2012, 56.
  • [31]. Sarıgöl, M.A., 2021. On equivalence of absolute double weighted mean methods. Quaestiones Mathematicae; 44(6): 755-764.
  • [32]. Altay, B., Başar, F., 2006. Some paranormed Riesz sequence spaces of non-absolute type. Southeast Asian Bulletin of Mathematics; 30(4): 591-608.
  • [33]. Başarır, M., Kara, E.E., 2011. On compact operators on the Riesz Bm-difference sequence space. Iranian Journal of Science and Technology (Sciences); 35(4): 279-285.
  • [34]. Sarıgöl, M.A., 2016. Norms and compactness of operators on absolute weighted mean summable series. Kuwait Journal of Science; 43(4): 68-74.
  • [35]. Yeşilkayagil, M., Başar, F., 2017. On the domain of Riesz mean in the space L_k^*. Filomat; 31(4): 925-940.
There are 35 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Research Article
Authors

Feride Çalışır 0000-0002-0395-3566

Canan Hazar Gulec 0000-0002-8825-5555

Submission Date May 6, 2024
Acceptance Date April 14, 2025
Publication Date June 27, 2025
Published in Issue Year 2025 Volume: 21 Issue: 2

Cite

APA Çalışır, F., & Gulec, C. H. (2025). Four Dimensional Matrix Operators on the Double Series Spaces of Weighted Means. Celal Bayar University Journal of Science, 21(2), 159-168. https://doi.org/10.18466/cbayarfbe.1479195
AMA 1.Çalışır F, Gulec CH. Four Dimensional Matrix Operators on the Double Series Spaces of Weighted Means. CBUJOS. 2025;21(2):159-168. doi:10.18466/cbayarfbe.1479195
Chicago Çalışır, Feride, and Canan Hazar Gulec. 2025. “Four Dimensional Matrix Operators on the Double Series Spaces of Weighted Means”. Celal Bayar University Journal of Science 21 (2): 159-68. https://doi.org/10.18466/cbayarfbe.1479195.
EndNote Çalışır F, Gulec CH (June 1, 2025) Four Dimensional Matrix Operators on the Double Series Spaces of Weighted Means. Celal Bayar University Journal of Science 21 2 159–168.
IEEE [1]F. Çalışır and C. H. Gulec, “Four Dimensional Matrix Operators on the Double Series Spaces of Weighted Means”, CBUJOS, vol. 21, no. 2, pp. 159–168, June 2025, doi: 10.18466/cbayarfbe.1479195.
ISNAD Çalışır, Feride - Gulec, Canan Hazar. “Four Dimensional Matrix Operators on the Double Series Spaces of Weighted Means”. Celal Bayar University Journal of Science 21/2 (June 1, 2025): 159-168. https://doi.org/10.18466/cbayarfbe.1479195.
JAMA 1.Çalışır F, Gulec CH. Four Dimensional Matrix Operators on the Double Series Spaces of Weighted Means. CBUJOS. 2025;21:159–168.
MLA Çalışır, Feride, and Canan Hazar Gulec. “Four Dimensional Matrix Operators on the Double Series Spaces of Weighted Means”. Celal Bayar University Journal of Science, vol. 21, no. 2, June 2025, pp. 159-68, doi:10.18466/cbayarfbe.1479195.
Vancouver 1.Çalışır F, Gulec CH. Four Dimensional Matrix Operators on the Double Series Spaces of Weighted Means. CBUJOS [Internet]. 2025 June 1;21(2):159-68. Available from: https://izlik.org/JA79LS42RR