Research Article
BibTex RIS Cite

Year 2025, Volume: 21 Issue: 4, 102 - 110, 29.12.2025
https://doi.org/10.18466/cbayarfbe.1657887

Abstract

References

  • [1]. Wang, K., Guo, J., Wang, J., Qi, D., Zheng, Y., Hu, S. 2024. Bio-inspired widening concrete using cellulose nanofiber to enhance multiscale fiber–matrix interface. Journal of Materials Science; 33: 6223-6233.
  • [2]. Martazayev, A.S., Erkinov, M.I. 2024. Experimental study on the frost resistance of fiber reinforced concrete. Miasto Przyszłości; 54: 664-670.
  • [3]. Li, J., Zha, W., Lv, W., Xu, T., Wang, B., Wang, B. 2024. Mechanical properties and sulfate resistance of basalt fiber-reinforced alkali-activated fly ash-slag-based coal gangue pervious concrete. Case Studies in Construction Materials; 210: 175-183.
  • [4]. Zhang, L., Li, H. 2023. Influence of discrete fiber reinforcement on the crack resistance of concrete. Materials and Structures; 56(4): 1376–89.
  • [5]. Zhao, X., Chen, Y. 2022. Effect of discrete fibers on crack propagation and mechanical properties of concrete. Cement and Concrete Composites; 144: 105502.
  • [6]. Singh, R., Kumar, P. 2023. Mitigating crack growth in high-performance concrete using discrete fiber reinforcements. Journal of Building Engineering; 67: 106342.
  • [7]. Wijaya, U., Yulianto, Y., Haryanto, E. 2024. Current literature review on image processing analysis for concrete damage assessment. Jurnal Pensil: Pendidikan Teknik Sipil; 13: 255–74.
  • [8]. Aydin, A.C. 2007. Self compactability of high volume hybrid fiber reinforced concrete. Construction and Building Materials; 21(6): 1149–54.
  • [9]. Ja'e, I.A., Salih, A.R., Syamsir, A., Min, T.H., Itam, Z., Amaechi, C.V., et al. 2023. Experimental and predictive evaluation of mechanical properties of kenaf-polypropylene fibre-reinforced concrete using response surface methodology. Developments in the Built Environment; 16: 100262.
  • [10]. Atea, R.S. 2019. A case study on concrete column strength improvement with different steel fibers and polypropylene fibers. Journal of Materials Research and Technology; 8(6): 6106–14.
  • [11]. Bheel, N., Mohammed, B.S., Ali, M.O.A., Shafiq, N., Tag-eldin, E.M., Ahmad, M. 2023. Effect of polyvinyl alcohol fiber on the mechanical properties and embodied carbon of engineered cementitious composites. Results in Engineering; 20: 101458.
  • [12]. Banthia, N., Sappakittipakorn, M. 2007. Toughness enhancement in steel fiber reinforced concrete through fiber hybridization. Cement and Concrete Research; 37(9): 1366–72.
  • [13]. Sim, J., Park, C. 2005. Characteristics of basalt fiber as a strengthening material for concrete structures. Composites Part B: Engineering; 36(6–7): 504–12.
  • [14]. Taha, A., Alnahhal, W., Alnuaimi, N. 2020. Bond durability of basalt FRP bars to fiber reinforced concrete in a saline environment. Composite Structures; 243: 112277.
  • [15]. Yang, L., Xie, H., Fang, S., Huang, C., Yang, A., Chao, Y.J. 2021. Experimental study on mechanical properties and damage mechanism of basalt fiber reinforced concrete under uniaxial compression. Structures; 31: 330–40.
  • [16]. TS 706 EN 12620+A1. 2009. Beton agregaları. TSE, Ankara, Türkiye.
  • [17]. TS EN 12350-2. 2019. Beton-Taze beton deneyleri-Bölüm 2: Çökme (slump) deneyi. TSE, Ankara, Türkiye.
  • [18]. TS EN 12390-3. 2019. Beton-Sertleşmiş beton deneyleri-Bölüm 3: Deney numunelerinin basınç dayanımının tayini. TSE, Ankara, Türkiye.
  • [19]. TS EN 12390-6. 2024. Beton-Sertleşmiş beton deneyleri-Bölüm 6: Deney numunelerinin yarmada çekme dayanımının tayini. TSE, Ankara, Türkiye.
  • [20]. TS EN 1170-6. 2010. Ön yapımlı beton mamuller-Cam elyaf takviyeli çimento (ctç) deney metodu-Bölüm 6: Suya daldırma yoluyla su emme ve kuru yoğunluk tayini. TSE, Ankara, Türkiye.
  • [21]. TS EN 772-11. 2012. Kâgir birimler-Deney yöntemleri-Bölüm 11: Kapiler su emme ve ilk su emme hızının tayini. TSE, Ankara, Türkiye.
  • [22]. ASTM C1760-12. 2012. Standard test method for bulk electrical conductivity of hardened concrete. ASTM International.
  • [23]. Zhou, C., Wang, J., Liu, B. 2018. Mechanical properties of basalt fiber reinforced concrete at different ages. Materials; 11(10): 1730.
  • [24]. Dündar, B., Çınar, E., Peşin, S. 2020. Bazalt ve karbon lif takviyeli betonların fiziksel ve mekanik özelliklerinin araştırılması. Gümüşhane Üniversitesi Fen Bilimleri Dergisi; 10(4): 1039–48.
  • [25]. Kizilkanat, A.B., Kabay, N., Akyüncü, V., Chowdhury, S., Akça, A.H. 2015. Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: An experimental study. Construction and Building Materials; 100: 218–24.
  • [26]. Yan, L., Shi, J. 2020. Influence of basalt fiber on the split tensile strength of concrete: A study using digital image processing techniques. Journal of Building Engineering; 30: 101212.
  • [27]. Singh, B., Nagar, R. 2020. Impact of basalt fiber addition on mechanical properties of concrete. Materials Today: Proceedings; 32(Part 3): 520–25.
  • [28]. Li, Y., Xu, L. 2019. Optimization of fiber content for enhancing the tensile properties of basalt fiber-reinforced concrete. Construction and Building Materials; 210: 175–83.
  • [29]. Banthia, N., Gupta, R. 2006. Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. Cement and Concrete Research; 36(7): 1263–7.
  • [30]. Mobasher, B., Banthia, N. 1997. Stress-strain behavior of fiber-reinforced concretes under uniaxial tension. Materials Journal; 94(6): 509–16.
  • [31]. Yin, S., Tuladhar, R., Combe, M., Collister, T. 2020. Basalt fiber-reinforced concrete under flexural loading: Experimental and numerical investigation. Construction and Building Materials; 247: 118513.
  • [32]. Li, W., Xu, J. 2008. Strengthening and toughening in basalt fiber-reinforced concrete. Journal of the Chinese Ceramic Society; 36(4): 476.
  • [33]. DiMaio, A., Bentz, D., Weiss, J. 2019. Crack resistance in fiber-reinforced concretes: Basalt fibers versus synthetic fibers. Materials and Structures; 52(3): 1–13.
  • [34]. Arslan, M.E. 2017. Bazalt liflerin geleneksel betonların mekanik özelikleri ve kırılma enerjilerine etkilerinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi; 23(3): 203–8.
  • [35]. Nili, M., Afroughsabet, V. 2010. The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete. Construction and Building Materials; 24(6): 927–33.
  • [36]. Gao, D., Zhang, W., Jiang, G. 2016. Influence of basalt fiber on physical and mechanical properties of cement-based materials: A review. Journal of Wuhan University of Technology-Mater. Sci. Ed.; 31(2): 396–400.
  • [37]. Zhao, Y., Li, X., Chen, W. 2022. Influence of basalt fibers on the electrical resistivity of concrete under different curing conditions. Materials; 15(7): 2147.
  • [38]. Kim, D., Park, S. 2022. Effect of basalt fiber on capillary water absorption of concrete composites. Construction and Building Materials; 318: 125960.
  • [39]. Liu, Z., Sun, M. 2022. Effect of basalt fiber on the porosity and water absorption of concrete. Journal of Advanced Concrete Technology; 20(4): 365–76.
  • [40]. Al-Hadithi, A.A., Hilal, N. 2023. Recent advancements in the use of basalt fibers for crack control in concrete structures. Journal of Advanced Concrete Technology; 41(2): 215–29.
  • [41]. Chen, J., Zhang, L., Liu, X. 2023. Application of image processing techniques in the evaluation of micro-cracks in fiber-reinforced concrete. Materials Today Communications; 40: 106322.
  • [42]. Wang, T., Xu, P., Li, Y. 2022. Improving the durability of concrete with basalt fiber reinforcement: A focus on porosity and water absorption. Construction and Building Materials; 356: 129651.

Image Processing-Based Crack Analysis on Splitting Tensile Strength Test

Year 2025, Volume: 21 Issue: 4, 102 - 110, 29.12.2025
https://doi.org/10.18466/cbayarfbe.1657887

Abstract

Nowadays, fiber reinforcement is widely utilized to enhance the performance of concrete and mitigate crack formation. By improving the tensile strength of concrete, fiber reinforcement hinders the initiation and propagation of cracks and emerges as an effective method for increasing long-term durability. In recent years, image processing techniques have also provided innovative approaches for the detection and monitoring of cracks on concrete surfaces. These methods enable the precise identification of cracks, thereby facilitating early detection of potential structural damage. This study aims to examine the influence of basalt fiber reinforcement on the mechanical and physical properties of concrete. Basalt fibers were incorporated into concrete mixtures at four different dosages: 1 kg/m³, 2 kg/m³, 3 kg/m³, and 4 kg/m³. The impact of basalt fiber content on crack initiation and propagation was evaluated using an image processing-based approach. Furthermore, the effects of basalt fiber reinforcement on water absorption, porosity, capillary water absorption, and electrical resistivity were investigated. The findings indicate that basalt fiber reinforcement is notably effective in reducing crack formation and propagation in concrete. However, the optimum fiber dosage should be determined through preliminary testing to ensure balanced performance.

Ethical Statement

There are no ethical issues after the publication of this manuscript.

References

  • [1]. Wang, K., Guo, J., Wang, J., Qi, D., Zheng, Y., Hu, S. 2024. Bio-inspired widening concrete using cellulose nanofiber to enhance multiscale fiber–matrix interface. Journal of Materials Science; 33: 6223-6233.
  • [2]. Martazayev, A.S., Erkinov, M.I. 2024. Experimental study on the frost resistance of fiber reinforced concrete. Miasto Przyszłości; 54: 664-670.
  • [3]. Li, J., Zha, W., Lv, W., Xu, T., Wang, B., Wang, B. 2024. Mechanical properties and sulfate resistance of basalt fiber-reinforced alkali-activated fly ash-slag-based coal gangue pervious concrete. Case Studies in Construction Materials; 210: 175-183.
  • [4]. Zhang, L., Li, H. 2023. Influence of discrete fiber reinforcement on the crack resistance of concrete. Materials and Structures; 56(4): 1376–89.
  • [5]. Zhao, X., Chen, Y. 2022. Effect of discrete fibers on crack propagation and mechanical properties of concrete. Cement and Concrete Composites; 144: 105502.
  • [6]. Singh, R., Kumar, P. 2023. Mitigating crack growth in high-performance concrete using discrete fiber reinforcements. Journal of Building Engineering; 67: 106342.
  • [7]. Wijaya, U., Yulianto, Y., Haryanto, E. 2024. Current literature review on image processing analysis for concrete damage assessment. Jurnal Pensil: Pendidikan Teknik Sipil; 13: 255–74.
  • [8]. Aydin, A.C. 2007. Self compactability of high volume hybrid fiber reinforced concrete. Construction and Building Materials; 21(6): 1149–54.
  • [9]. Ja'e, I.A., Salih, A.R., Syamsir, A., Min, T.H., Itam, Z., Amaechi, C.V., et al. 2023. Experimental and predictive evaluation of mechanical properties of kenaf-polypropylene fibre-reinforced concrete using response surface methodology. Developments in the Built Environment; 16: 100262.
  • [10]. Atea, R.S. 2019. A case study on concrete column strength improvement with different steel fibers and polypropylene fibers. Journal of Materials Research and Technology; 8(6): 6106–14.
  • [11]. Bheel, N., Mohammed, B.S., Ali, M.O.A., Shafiq, N., Tag-eldin, E.M., Ahmad, M. 2023. Effect of polyvinyl alcohol fiber on the mechanical properties and embodied carbon of engineered cementitious composites. Results in Engineering; 20: 101458.
  • [12]. Banthia, N., Sappakittipakorn, M. 2007. Toughness enhancement in steel fiber reinforced concrete through fiber hybridization. Cement and Concrete Research; 37(9): 1366–72.
  • [13]. Sim, J., Park, C. 2005. Characteristics of basalt fiber as a strengthening material for concrete structures. Composites Part B: Engineering; 36(6–7): 504–12.
  • [14]. Taha, A., Alnahhal, W., Alnuaimi, N. 2020. Bond durability of basalt FRP bars to fiber reinforced concrete in a saline environment. Composite Structures; 243: 112277.
  • [15]. Yang, L., Xie, H., Fang, S., Huang, C., Yang, A., Chao, Y.J. 2021. Experimental study on mechanical properties and damage mechanism of basalt fiber reinforced concrete under uniaxial compression. Structures; 31: 330–40.
  • [16]. TS 706 EN 12620+A1. 2009. Beton agregaları. TSE, Ankara, Türkiye.
  • [17]. TS EN 12350-2. 2019. Beton-Taze beton deneyleri-Bölüm 2: Çökme (slump) deneyi. TSE, Ankara, Türkiye.
  • [18]. TS EN 12390-3. 2019. Beton-Sertleşmiş beton deneyleri-Bölüm 3: Deney numunelerinin basınç dayanımının tayini. TSE, Ankara, Türkiye.
  • [19]. TS EN 12390-6. 2024. Beton-Sertleşmiş beton deneyleri-Bölüm 6: Deney numunelerinin yarmada çekme dayanımının tayini. TSE, Ankara, Türkiye.
  • [20]. TS EN 1170-6. 2010. Ön yapımlı beton mamuller-Cam elyaf takviyeli çimento (ctç) deney metodu-Bölüm 6: Suya daldırma yoluyla su emme ve kuru yoğunluk tayini. TSE, Ankara, Türkiye.
  • [21]. TS EN 772-11. 2012. Kâgir birimler-Deney yöntemleri-Bölüm 11: Kapiler su emme ve ilk su emme hızının tayini. TSE, Ankara, Türkiye.
  • [22]. ASTM C1760-12. 2012. Standard test method for bulk electrical conductivity of hardened concrete. ASTM International.
  • [23]. Zhou, C., Wang, J., Liu, B. 2018. Mechanical properties of basalt fiber reinforced concrete at different ages. Materials; 11(10): 1730.
  • [24]. Dündar, B., Çınar, E., Peşin, S. 2020. Bazalt ve karbon lif takviyeli betonların fiziksel ve mekanik özelliklerinin araştırılması. Gümüşhane Üniversitesi Fen Bilimleri Dergisi; 10(4): 1039–48.
  • [25]. Kizilkanat, A.B., Kabay, N., Akyüncü, V., Chowdhury, S., Akça, A.H. 2015. Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: An experimental study. Construction and Building Materials; 100: 218–24.
  • [26]. Yan, L., Shi, J. 2020. Influence of basalt fiber on the split tensile strength of concrete: A study using digital image processing techniques. Journal of Building Engineering; 30: 101212.
  • [27]. Singh, B., Nagar, R. 2020. Impact of basalt fiber addition on mechanical properties of concrete. Materials Today: Proceedings; 32(Part 3): 520–25.
  • [28]. Li, Y., Xu, L. 2019. Optimization of fiber content for enhancing the tensile properties of basalt fiber-reinforced concrete. Construction and Building Materials; 210: 175–83.
  • [29]. Banthia, N., Gupta, R. 2006. Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. Cement and Concrete Research; 36(7): 1263–7.
  • [30]. Mobasher, B., Banthia, N. 1997. Stress-strain behavior of fiber-reinforced concretes under uniaxial tension. Materials Journal; 94(6): 509–16.
  • [31]. Yin, S., Tuladhar, R., Combe, M., Collister, T. 2020. Basalt fiber-reinforced concrete under flexural loading: Experimental and numerical investigation. Construction and Building Materials; 247: 118513.
  • [32]. Li, W., Xu, J. 2008. Strengthening and toughening in basalt fiber-reinforced concrete. Journal of the Chinese Ceramic Society; 36(4): 476.
  • [33]. DiMaio, A., Bentz, D., Weiss, J. 2019. Crack resistance in fiber-reinforced concretes: Basalt fibers versus synthetic fibers. Materials and Structures; 52(3): 1–13.
  • [34]. Arslan, M.E. 2017. Bazalt liflerin geleneksel betonların mekanik özelikleri ve kırılma enerjilerine etkilerinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi; 23(3): 203–8.
  • [35]. Nili, M., Afroughsabet, V. 2010. The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete. Construction and Building Materials; 24(6): 927–33.
  • [36]. Gao, D., Zhang, W., Jiang, G. 2016. Influence of basalt fiber on physical and mechanical properties of cement-based materials: A review. Journal of Wuhan University of Technology-Mater. Sci. Ed.; 31(2): 396–400.
  • [37]. Zhao, Y., Li, X., Chen, W. 2022. Influence of basalt fibers on the electrical resistivity of concrete under different curing conditions. Materials; 15(7): 2147.
  • [38]. Kim, D., Park, S. 2022. Effect of basalt fiber on capillary water absorption of concrete composites. Construction and Building Materials; 318: 125960.
  • [39]. Liu, Z., Sun, M. 2022. Effect of basalt fiber on the porosity and water absorption of concrete. Journal of Advanced Concrete Technology; 20(4): 365–76.
  • [40]. Al-Hadithi, A.A., Hilal, N. 2023. Recent advancements in the use of basalt fibers for crack control in concrete structures. Journal of Advanced Concrete Technology; 41(2): 215–29.
  • [41]. Chen, J., Zhang, L., Liu, X. 2023. Application of image processing techniques in the evaluation of micro-cracks in fiber-reinforced concrete. Materials Today Communications; 40: 106322.
  • [42]. Wang, T., Xu, P., Li, Y. 2022. Improving the durability of concrete with basalt fiber reinforcement: A focus on porosity and water absorption. Construction and Building Materials; 356: 129651.
There are 42 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Research Article
Authors

Emriye Çınar Resuloğulları 0000-0002-9435-2968

Submission Date March 14, 2025
Acceptance Date July 1, 2025
Publication Date December 29, 2025
Published in Issue Year 2025 Volume: 21 Issue: 4

Cite

APA Çınar Resuloğulları, E. (2025). Image Processing-Based Crack Analysis on Splitting Tensile Strength Test. Celal Bayar University Journal of Science, 21(4), 102-110. https://doi.org/10.18466/cbayarfbe.1657887
AMA Çınar Resuloğulları E. Image Processing-Based Crack Analysis on Splitting Tensile Strength Test. CBUJOS. December 2025;21(4):102-110. doi:10.18466/cbayarfbe.1657887
Chicago Çınar Resuloğulları, Emriye. “Image Processing-Based Crack Analysis on Splitting Tensile Strength Test”. Celal Bayar University Journal of Science 21, no. 4 (December 2025): 102-10. https://doi.org/10.18466/cbayarfbe.1657887.
EndNote Çınar Resuloğulları E (December 1, 2025) Image Processing-Based Crack Analysis on Splitting Tensile Strength Test. Celal Bayar University Journal of Science 21 4 102–110.
IEEE E. Çınar Resuloğulları, “Image Processing-Based Crack Analysis on Splitting Tensile Strength Test”, CBUJOS, vol. 21, no. 4, pp. 102–110, 2025, doi: 10.18466/cbayarfbe.1657887.
ISNAD Çınar Resuloğulları, Emriye. “Image Processing-Based Crack Analysis on Splitting Tensile Strength Test”. Celal Bayar University Journal of Science 21/4 (December2025), 102-110. https://doi.org/10.18466/cbayarfbe.1657887.
JAMA Çınar Resuloğulları E. Image Processing-Based Crack Analysis on Splitting Tensile Strength Test. CBUJOS. 2025;21:102–110.
MLA Çınar Resuloğulları, Emriye. “Image Processing-Based Crack Analysis on Splitting Tensile Strength Test”. Celal Bayar University Journal of Science, vol. 21, no. 4, 2025, pp. 102-10, doi:10.18466/cbayarfbe.1657887.
Vancouver Çınar Resuloğulları E. Image Processing-Based Crack Analysis on Splitting Tensile Strength Test. CBUJOS. 2025;21(4):102-10.