Research Article
BibTex RIS Cite
Year 2017, , 651 - 655, 30.09.2017
https://doi.org/10.18466/cbayarfbe.339322

Abstract

References

  • 1. Zak, A.K., Gan, W.C., AbdMajid, W.H., Darroudi, M., Ve-layutham, T.S.; Experimental and theoretical dielectric studies of PVDF/PZT nanocomposite thin films, Ceramics International, 2011; 37(5) 1653–1660.
  • 2. Jain, A., Prashanth, K.J., Sharma, A.K.R., ArpitJain, P.N.; Die-lectric and Piezoelectric Properties of PVDF/PZT Composites: A Review. Polymer Engineering and Science, 2015; 55(7) 1-28.
  • 3. Chu, S.Y., Chen, T.Y., Tsai, I.T., Water, W.; Doping effects of Nb additives on the piezoelectric and dielectric properties of PZT ceramics and its application on SAW device, Sensors and Actuators A, 2004; 113 198–203.
  • 4. Bagirov, M.A., Nuraliev, N.A. Nuraliev and Kurbanov, M.A.; Soviet Physics-Technical Physics, 1972; 17 495-498.
  • 5. Yun, J.S., Park, C.K., Jeong, Y.H., et al. The Fabrication and Characterization of Piezoelectric PZT/PVDF Electrospun Nanofiber Composites, Nanomaterials and Nanotechnology, 2016; 6 20.
  • 6. Huang, H.H., Chen, K.S., Design, analysis, and experimental studies of a novel PVDF-based piezoelectric energy harvester with beating mechanisms, Sensors and Actuators A-Physical, 2016; 238 317-328.
  • 7. Gaur, A.M., Rana, D.S., Dispersion relations for SH waves propagation in a porous piezoelectric (PZT-PVDF) composite structure, Acta Mechanica, 2015; 226 12 4017-4029.
  • 8. Jain, A., Prashanth, K.J., Sharma, A.K., et al. Dielectric and piezoelectric properties of PVDF/PZT composites: A review, Poly-mer Engineering and Science, 2015; 55 7 1589-1616.
  • 9. Tiwari, V., Srivastava, G., Structural, dielectric and piezoelectric properties of 0-3 PZT/PVDF composites, Ceramics International, 2015; 41 6 8008-8013.
  • 10. Jaitanong, N., Yimnirun, R., Zeng, H.R., et al. Piezoelectric properties of cement based/PVDF/PZT composites, Materials Let-ters, 2014; 130 146-149.
  • 11. Li, R., Zhang, L., Shi, Z., Pei, J., Effects of Coupling Agents on the Structure and Electrical Properties of PZT-Poly (VinylideneFlu-oride) Composites, Applied Sciences-Basel, 2016; 6 10 282.
  • 12. Tiwari, V., Srivastava, G., Enhanced dielectric and piezoelectric properties of 0-3 PZT/PVDF composites, Journal of Polymer Re-search, 2016; 23 3 38.
  • 13. Sodano, H.A., Inman, D.J., Park, G., A review of power har-vesting from vibration using piezoelectric materials. Shock and Vibration Diggest, 2004; 36 197–205.
  • 14. Bowen, C.R., Kim, H.A., Weaver, P.M., Dunn, S., Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy and Environmental Science, 2014; 7 25–44.
  • 15. Gad-el-Hak, M., MEMS: Design and Fabrication, CRC Press Inc., London, UK, 2005.
  • 16. Walters, R.B., Hydraulic and electric-hydraulic control systems, Springer, 2000.
  • 17. De Volder, M., Ceyssens, F., Reynaerts, D., and Puers, R., De-sign and characterisation of a hydraulic micro actuator fabricated by lithography, in Micro Electro Mechanical Systems, 2009. MEMS 2009. IEEE 22nd International Conference on, 2009; 451-454.
  • 18. Adenuga, O.T., and Mpofu, K., Control system for electrohy-draulic synchronization on RBPT, 47Th CIRP Conference on Man-ufacturing, 2014.
  • 19. Chabok, H., Zhou, C., Chen, Y., Eskandarinazhad, A., Zhou, Q., and Shung, K., Ultrasound Transducer Array Fabrication Based on Additive Manufacturing of Piezocomposites, ASME/ISCIE International Symposium of Flexible Automation, 2012.

The Fabrication of Local Piezoelectric Sensors Using Hydraulic Pressing System Based on PLC

Year 2017, , 651 - 655, 30.09.2017
https://doi.org/10.18466/cbayarfbe.339322

Abstract

In this study, the local PZT-PVDF composite sensors are produced. The
PLC based hydraulic pressure system (250kgF) is as specially designed and
fabricated to produce these sensors. The composite sensors are threated under
pooling condition in silicon oil at 30 minutes, 120oC.  Frequency-voltage charactrestics of the piezoelectric
sensor that integrated on vibration measurement system are defined, in addition
d33 (piezoelectric coefficient), capacitance (C), and Qm
(mechanical quality factor) values are determined. It is seen that, fabricated
these sensors have 2.5 to 3.7 Vpp (pick to pick) voltage at 10Hz
resonance frequency. d33 and Qm values of the mentioned
sensors are characterized as 10.5-8.6 , 3.7-2.5, respectively. In lower
frequency, these sensors which have maximum 3.7 Vpp voltage may use
as strain sensor, vibration sensor, atomic force microscope cantilever
piezoelectric sensor, etc. For the first time, the local piezoelectric sensors
are fabricated, and PLC based hydraulic pressure system is designed to produce
them in Turkey.

References

  • 1. Zak, A.K., Gan, W.C., AbdMajid, W.H., Darroudi, M., Ve-layutham, T.S.; Experimental and theoretical dielectric studies of PVDF/PZT nanocomposite thin films, Ceramics International, 2011; 37(5) 1653–1660.
  • 2. Jain, A., Prashanth, K.J., Sharma, A.K.R., ArpitJain, P.N.; Die-lectric and Piezoelectric Properties of PVDF/PZT Composites: A Review. Polymer Engineering and Science, 2015; 55(7) 1-28.
  • 3. Chu, S.Y., Chen, T.Y., Tsai, I.T., Water, W.; Doping effects of Nb additives on the piezoelectric and dielectric properties of PZT ceramics and its application on SAW device, Sensors and Actuators A, 2004; 113 198–203.
  • 4. Bagirov, M.A., Nuraliev, N.A. Nuraliev and Kurbanov, M.A.; Soviet Physics-Technical Physics, 1972; 17 495-498.
  • 5. Yun, J.S., Park, C.K., Jeong, Y.H., et al. The Fabrication and Characterization of Piezoelectric PZT/PVDF Electrospun Nanofiber Composites, Nanomaterials and Nanotechnology, 2016; 6 20.
  • 6. Huang, H.H., Chen, K.S., Design, analysis, and experimental studies of a novel PVDF-based piezoelectric energy harvester with beating mechanisms, Sensors and Actuators A-Physical, 2016; 238 317-328.
  • 7. Gaur, A.M., Rana, D.S., Dispersion relations for SH waves propagation in a porous piezoelectric (PZT-PVDF) composite structure, Acta Mechanica, 2015; 226 12 4017-4029.
  • 8. Jain, A., Prashanth, K.J., Sharma, A.K., et al. Dielectric and piezoelectric properties of PVDF/PZT composites: A review, Poly-mer Engineering and Science, 2015; 55 7 1589-1616.
  • 9. Tiwari, V., Srivastava, G., Structural, dielectric and piezoelectric properties of 0-3 PZT/PVDF composites, Ceramics International, 2015; 41 6 8008-8013.
  • 10. Jaitanong, N., Yimnirun, R., Zeng, H.R., et al. Piezoelectric properties of cement based/PVDF/PZT composites, Materials Let-ters, 2014; 130 146-149.
  • 11. Li, R., Zhang, L., Shi, Z., Pei, J., Effects of Coupling Agents on the Structure and Electrical Properties of PZT-Poly (VinylideneFlu-oride) Composites, Applied Sciences-Basel, 2016; 6 10 282.
  • 12. Tiwari, V., Srivastava, G., Enhanced dielectric and piezoelectric properties of 0-3 PZT/PVDF composites, Journal of Polymer Re-search, 2016; 23 3 38.
  • 13. Sodano, H.A., Inman, D.J., Park, G., A review of power har-vesting from vibration using piezoelectric materials. Shock and Vibration Diggest, 2004; 36 197–205.
  • 14. Bowen, C.R., Kim, H.A., Weaver, P.M., Dunn, S., Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy and Environmental Science, 2014; 7 25–44.
  • 15. Gad-el-Hak, M., MEMS: Design and Fabrication, CRC Press Inc., London, UK, 2005.
  • 16. Walters, R.B., Hydraulic and electric-hydraulic control systems, Springer, 2000.
  • 17. De Volder, M., Ceyssens, F., Reynaerts, D., and Puers, R., De-sign and characterisation of a hydraulic micro actuator fabricated by lithography, in Micro Electro Mechanical Systems, 2009. MEMS 2009. IEEE 22nd International Conference on, 2009; 451-454.
  • 18. Adenuga, O.T., and Mpofu, K., Control system for electrohy-draulic synchronization on RBPT, 47Th CIRP Conference on Man-ufacturing, 2014.
  • 19. Chabok, H., Zhou, C., Chen, Y., Eskandarinazhad, A., Zhou, Q., and Shung, K., Ultrasound Transducer Array Fabrication Based on Additive Manufacturing of Piezocomposites, ASME/ISCIE International Symposium of Flexible Automation, 2012.
There are 19 citations in total.

Details

Journal Section Articles
Authors

Levent Paralı

İsrafil Şabikoğlu This is me

Publication Date September 30, 2017
Published in Issue Year 2017

Cite

APA Paralı, L., & Şabikoğlu, İ. (2017). The Fabrication of Local Piezoelectric Sensors Using Hydraulic Pressing System Based on PLC. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 13(3), 651-655. https://doi.org/10.18466/cbayarfbe.339322
AMA Paralı L, Şabikoğlu İ. The Fabrication of Local Piezoelectric Sensors Using Hydraulic Pressing System Based on PLC. CBUJOS. September 2017;13(3):651-655. doi:10.18466/cbayarfbe.339322
Chicago Paralı, Levent, and İsrafil Şabikoğlu. “The Fabrication of Local Piezoelectric Sensors Using Hydraulic Pressing System Based on PLC”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 13, no. 3 (September 2017): 651-55. https://doi.org/10.18466/cbayarfbe.339322.
EndNote Paralı L, Şabikoğlu İ (September 1, 2017) The Fabrication of Local Piezoelectric Sensors Using Hydraulic Pressing System Based on PLC. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 13 3 651–655.
IEEE L. Paralı and İ. Şabikoğlu, “The Fabrication of Local Piezoelectric Sensors Using Hydraulic Pressing System Based on PLC”, CBUJOS, vol. 13, no. 3, pp. 651–655, 2017, doi: 10.18466/cbayarfbe.339322.
ISNAD Paralı, Levent - Şabikoğlu, İsrafil. “The Fabrication of Local Piezoelectric Sensors Using Hydraulic Pressing System Based on PLC”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 13/3 (September 2017), 651-655. https://doi.org/10.18466/cbayarfbe.339322.
JAMA Paralı L, Şabikoğlu İ. The Fabrication of Local Piezoelectric Sensors Using Hydraulic Pressing System Based on PLC. CBUJOS. 2017;13:651–655.
MLA Paralı, Levent and İsrafil Şabikoğlu. “The Fabrication of Local Piezoelectric Sensors Using Hydraulic Pressing System Based on PLC”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 13, no. 3, 2017, pp. 651-5, doi:10.18466/cbayarfbe.339322.
Vancouver Paralı L, Şabikoğlu İ. The Fabrication of Local Piezoelectric Sensors Using Hydraulic Pressing System Based on PLC. CBUJOS. 2017;13(3):651-5.