Research Article
BibTex RIS Cite
Year 2018, , 333 - 336, 30.09.2018
https://doi.org/10.18466/cbayarfbe.449954

Abstract

References

  • 1. Bernstein, S, N, Demonstration du teoreme de Weirerstrass, fondee sur le calcul des probabilites, Communication Society Mathematics, 1913, 13.
  • 2. Berens, H, Lorentz, G, G, Inverse theorems for Bernstein polynomials, Indiana University Mathematics Journal, 1972, 21, 693-708.
  • 3. Berens, H, DeVore, R,A, Quantitative Korovkin theorems for positive linear operators on Lp spaces, Transactions American Mathematical Society, 1978, 245, 349-361.
  • 4. Ditzian, Z, Totik, V, Moduli of Smoothness, Springer, Series in Computational Mathematics, Springer-Verlag, 1987, (9).
  • 5. Bing-Zheng, L, Bo-Lu, H, Ding-Xuan Z, Approximation on Variable Exponent Spaces by Linear Integral Operators, Journal of Approximation Theory, 2017, 223, 29-51.
  • 6. Orlicz,W, Uber konjugierte Exponentenfolgen, Studia Mathematica, 1931, 3, 200-211.
  • 7. Acerbi, E, Mingione, G, Regularity results for a class of functionals with nonstandard growth, Archive for Rational Mechanics and Analysis, 2001, 156, 121-140.
  • 8. Blomgren, P, Chan, T, Mulet, P, Wong, C, K, Total variation image restoration: numerical methods and extensions, Proceedings of the 1997 IEEE International Conference on Image Processing, 1997, 3, 384-387.
  • 9. Bollt, E, M, Chartrand, R, Esedoglu, S, Schultz, P, Vixie, K, R, Graduated adaptive image denoising: local compromise between total variation and isotropic diffusion, Advance Computational Mathematics, 2009, 31, 61-85.
  • 10. Chen,Y, Levine, S, Rao, M, Variable exponent linear growth functionals in image restoration, SIAM Journal of Applied Mathematics, 2006, 66, 1383-1406
  • 11. Mamedov,F, Zeren,Y, Akın, L, Compactification of weighted Hardy operator in variable exponent Lebesgue spaces, Asian Journal of Mathematics and Computer Science, 2017, 17:1, 38-47.
  • 12. Fan, X, L, Zhao, D, On the spaces Lp(x) and Wm;p(x), Journal of Mathematic Analysis and Applications, 2001, 263, 424-446.
  • 13. Diening, L, Harjulehto, P, Hastö, P, Ruzicka, M, Lebesgue and Sobolev Spaces with Variable Exponents, Springer-Verlag, Berlin/Heidelberg, 2011.
  • 14. Stein, E, M, Singular Integrals and Dierentiability Properties of Functions, Princeton University Press, Princeton, New Jersey, 1970.

A Characterization of Approximation of Hardy Operators in VLS

Year 2018, , 333 - 336, 30.09.2018
https://doi.org/10.18466/cbayarfbe.449954

Abstract

Variable exponent spaces and Hardy operator space have
played an important role in recent harmonic analysis because they have an
interesting norm including both local and global properties. The variable
exponent Lebesgue spaces are of interest for their applications to modeling
problems in physics, and to the study of variational integrals and partial di
erential
equations with non-standard growth conditions. This  studies 
also  has  been 
stimulated  by  problems 
of  elasticity,  fluid 
dynamics,  calculus  of variations,  and  
differential   equations  with 
non-standard   growth   conditions.
In this study, we will discuss
a characterization of approximation of
Hardy operators in variable Lebesgue spaces
.

References

  • 1. Bernstein, S, N, Demonstration du teoreme de Weirerstrass, fondee sur le calcul des probabilites, Communication Society Mathematics, 1913, 13.
  • 2. Berens, H, Lorentz, G, G, Inverse theorems for Bernstein polynomials, Indiana University Mathematics Journal, 1972, 21, 693-708.
  • 3. Berens, H, DeVore, R,A, Quantitative Korovkin theorems for positive linear operators on Lp spaces, Transactions American Mathematical Society, 1978, 245, 349-361.
  • 4. Ditzian, Z, Totik, V, Moduli of Smoothness, Springer, Series in Computational Mathematics, Springer-Verlag, 1987, (9).
  • 5. Bing-Zheng, L, Bo-Lu, H, Ding-Xuan Z, Approximation on Variable Exponent Spaces by Linear Integral Operators, Journal of Approximation Theory, 2017, 223, 29-51.
  • 6. Orlicz,W, Uber konjugierte Exponentenfolgen, Studia Mathematica, 1931, 3, 200-211.
  • 7. Acerbi, E, Mingione, G, Regularity results for a class of functionals with nonstandard growth, Archive for Rational Mechanics and Analysis, 2001, 156, 121-140.
  • 8. Blomgren, P, Chan, T, Mulet, P, Wong, C, K, Total variation image restoration: numerical methods and extensions, Proceedings of the 1997 IEEE International Conference on Image Processing, 1997, 3, 384-387.
  • 9. Bollt, E, M, Chartrand, R, Esedoglu, S, Schultz, P, Vixie, K, R, Graduated adaptive image denoising: local compromise between total variation and isotropic diffusion, Advance Computational Mathematics, 2009, 31, 61-85.
  • 10. Chen,Y, Levine, S, Rao, M, Variable exponent linear growth functionals in image restoration, SIAM Journal of Applied Mathematics, 2006, 66, 1383-1406
  • 11. Mamedov,F, Zeren,Y, Akın, L, Compactification of weighted Hardy operator in variable exponent Lebesgue spaces, Asian Journal of Mathematics and Computer Science, 2017, 17:1, 38-47.
  • 12. Fan, X, L, Zhao, D, On the spaces Lp(x) and Wm;p(x), Journal of Mathematic Analysis and Applications, 2001, 263, 424-446.
  • 13. Diening, L, Harjulehto, P, Hastö, P, Ruzicka, M, Lebesgue and Sobolev Spaces with Variable Exponents, Springer-Verlag, Berlin/Heidelberg, 2011.
  • 14. Stein, E, M, Singular Integrals and Dierentiability Properties of Functions, Princeton University Press, Princeton, New Jersey, 1970.
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Lütfi Akın

Publication Date September 30, 2018
Published in Issue Year 2018

Cite

APA Akın, L. (2018). A Characterization of Approximation of Hardy Operators in VLS. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 14(3), 333-336. https://doi.org/10.18466/cbayarfbe.449954
AMA Akın L. A Characterization of Approximation of Hardy Operators in VLS. CBUJOS. September 2018;14(3):333-336. doi:10.18466/cbayarfbe.449954
Chicago Akın, Lütfi. “A Characterization of Approximation of Hardy Operators in VLS”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 14, no. 3 (September 2018): 333-36. https://doi.org/10.18466/cbayarfbe.449954.
EndNote Akın L (September 1, 2018) A Characterization of Approximation of Hardy Operators in VLS. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 14 3 333–336.
IEEE L. Akın, “A Characterization of Approximation of Hardy Operators in VLS”, CBUJOS, vol. 14, no. 3, pp. 333–336, 2018, doi: 10.18466/cbayarfbe.449954.
ISNAD Akın, Lütfi. “A Characterization of Approximation of Hardy Operators in VLS”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 14/3 (September 2018), 333-336. https://doi.org/10.18466/cbayarfbe.449954.
JAMA Akın L. A Characterization of Approximation of Hardy Operators in VLS. CBUJOS. 2018;14:333–336.
MLA Akın, Lütfi. “A Characterization of Approximation of Hardy Operators in VLS”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, vol. 14, no. 3, 2018, pp. 333-6, doi:10.18466/cbayarfbe.449954.
Vancouver Akın L. A Characterization of Approximation of Hardy Operators in VLS. CBUJOS. 2018;14(3):333-6.