Synthesis, Characterization and Catalytic Properties of Cationic N-Heterocyclic Carbene Copper(I) Complex
Year 2019,
, 95 - 98, 22.03.2019
Deniz Demir Atlı
,
Şebnem E. Sözerli
Abstract
A
cationic N-heterocyclic carbene copper(I) complex was prepared and
characterized by FT-IR, 1H NMR, 13C NMR, elemental
analysis and ESI/TOF mass spectrometry methods. Catalytic performances of the
complex were studied in the [3+2] cycloaddition reaction of some azides and
alkynes
References
- 1. Arduengo III, AJ, Dias, HVR, Calabrese, JC, Davidson, F. 1993. Homoleptic carbene-silver(I) and carbene-copper(I) complexes. Organometallics; 12: 3405-3409.
- 2. Trose, M, Nahra, F, Poater, A, Cordes, DB, Slawin, AMZ, Cavallo, L, Cazin, CSJ. 2017. Investigating the structure and reactivity of azolyl-based copper(I)–NHC complexes: The role of the anionic ligand. ACS Catalysis; 7: 8176-8183.
- 3. Delvos, LB, Oestreich, M. 2015. Temperature-dependent direct enantioconvergent silylation of a racemic cyclic allylic phosphate by copper(I) catalyzed allylic substitution. Synthesis-Stuttgart; 47: 924-933.
- 4. Delp, SA, Munro-Leighton, C, Goj, LA, Ramirez, MA, Gunnoe, TB, Petersen, JL, Boyle, PD. 2007. Addition of S−H bonds across electron-deficient olefins catalyzed by well-defined copper(I) thiolate complexes. Inorganic Chemistry; 46: 2365-2367.
- 5. Jang, H, Zhugralin, AR, Lee, Y, Hoveyda, AH. 2011. Highly selective methods for synthesis of internal (α-) vinylboronates through efficient NHC–Cu-catalyzed hydroboration of terminal alkynes. Utility in chemical synthesis and mechanistic basis for selectivity. Journal of American Chemical Society; 133: 7859-7871.
- 6. Wang, W, Zhang, G, Lang, R, Xia, C, Li, F. 2013. pH-responsive N-heterocyclic carbene copper(I) complexes: syntheses and recoverable applications in the carboxylation of arylboronic esters and benzoxazole with carbon dioxide. Green Chemistry; 15: 635-640.
- 7. Lewis, WG, Green, LG, Radic, Z, Carlier, PR, Taylor, P, Finn, MG, Sharpless, KB. 2002. Click chemistry in situ: Acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angewandte Chemie International Edition; 41: 1053-1057.
- 8. Whiting, M, Muldoon, J, Lin, Y-C, Silverman, SM, Lindstrom, W, Olson, AJ, Kolb, HC, Finn, MG, Sharpless, KB, Elder, JH. 2006. Inhibitors of HIV‐1 protease by using In situ Click chemistry. Angewandte Chemie International Edition; 45: 1435-1439.
- 9. Demir Atlı, D. 2018. Synthesis and characterization of benzimidazolium salts bearing triazole groups. Celal Bayar University Journal of Science; 14: 57-60.
- 10. Golas, PL, Tsarevsky, NV, Matyjaszewski, K. 2008. Structure-reactivity correlation in Click chemistry: Substituent effect on azide reactivity. Macromolecular Rapid Communications; 29: 1167-1171.
- 11. Pasupuleti, BG, Bez, G. 2019. CuI/L-proline catalyzed click reaction in glycerol for the synthesis of 1,2,3-triazoles. Tetrahedron Letters; 60: 142-146.
- 12. Nia, AS, Rana, S, Döhler, D, Jirsa, F, Meister, A, Guadagno, L, Koslowski, E, Bron, M, Binder, WH. 2015. Carbon‐supported copper nanomaterials: Recyclable catalysts for Huisgen [3+2] cycloaddition reactions. Chemistry-A European Journal; 21: 10763-10770.
- 13. Diez-Gonzalez, S, Escudero-Adan, EC, Benet-Buchholz, J, Stevens, ED, Slawin, AMZ, Nolan, SP. 2010. [(NHC)CuX] complexes: Synthesis, characterization and catalytic activities in reduction reactions and Click chemistry. On the advantage of using well-defined catalytic systems. Dalton Transactions; 39: 7595-7606.
- 14. Kaloğlu, N, Özdemir, İ, Günal, S, Özdemir, İ. 2017. Synthesis and antimicrobial activity of bulky 3,5‐di‐tert‐butyl substituent‐containing silver–N‐heterocyclic carbene complexes. Applied Organometallic Chemistry; 31: e3803.
- 15. Kwok, SW, Fotsing, JR, Fraser, RJ, Rodionov, VO, Fokin, VV. 2010. Transition-metal-free catalytic synthesis of 1,5-diaryl-1,2,3-triazoles. Organic Letters; 12: 4217-4219.
- 16. Alvarez, SG, Alvarez, MT. 1997. A practical procedure for the synthesis of alkyl azides at ambient temperature in dimethyl sulfoxide in high purity and yield. Synthesis; 4: 413–414.
- 17. Shao, C, Wang, X, Xu, J, Zhao, J, Zhang, Q, Hu, Y. 2010. Carboxylic Acid-Promoted Copper(I)-Catalyzed Azide-Alkyne Cycloaddition. Journal of Organic Chemistry; 75: 7002-7005.
- 18. Adzima, BJ, Tao, Y, Kloxin, CJ, DeFrorest, CA, Anseth, KS, Bowman, CN. 2011. Spatial and temporal control of the alkyne-azide cycloaddition by photoinitiated Cu(II) reduction. Nature Chemistry; 3: 256-259.
- 19. Wang, D, Li, N, Zhao, M, Shi, W, Ma, C, Chen, B. 2010. Solvent-free synthesis of 1,4-disubstituted 1,2,3-triazoles using a low amount of Cu(PPh3)2NO3 complex. Green Chemistry; 12: 2120-2123.
- 20. Liu, B, Ma, X, Wu, F, Chen, W. 2015. Simple synthesis of neutral and cationic Cu-NHC complexes. Dalton Transactions, 44: 1836-1844.
Year 2019,
, 95 - 98, 22.03.2019
Deniz Demir Atlı
,
Şebnem E. Sözerli
References
- 1. Arduengo III, AJ, Dias, HVR, Calabrese, JC, Davidson, F. 1993. Homoleptic carbene-silver(I) and carbene-copper(I) complexes. Organometallics; 12: 3405-3409.
- 2. Trose, M, Nahra, F, Poater, A, Cordes, DB, Slawin, AMZ, Cavallo, L, Cazin, CSJ. 2017. Investigating the structure and reactivity of azolyl-based copper(I)–NHC complexes: The role of the anionic ligand. ACS Catalysis; 7: 8176-8183.
- 3. Delvos, LB, Oestreich, M. 2015. Temperature-dependent direct enantioconvergent silylation of a racemic cyclic allylic phosphate by copper(I) catalyzed allylic substitution. Synthesis-Stuttgart; 47: 924-933.
- 4. Delp, SA, Munro-Leighton, C, Goj, LA, Ramirez, MA, Gunnoe, TB, Petersen, JL, Boyle, PD. 2007. Addition of S−H bonds across electron-deficient olefins catalyzed by well-defined copper(I) thiolate complexes. Inorganic Chemistry; 46: 2365-2367.
- 5. Jang, H, Zhugralin, AR, Lee, Y, Hoveyda, AH. 2011. Highly selective methods for synthesis of internal (α-) vinylboronates through efficient NHC–Cu-catalyzed hydroboration of terminal alkynes. Utility in chemical synthesis and mechanistic basis for selectivity. Journal of American Chemical Society; 133: 7859-7871.
- 6. Wang, W, Zhang, G, Lang, R, Xia, C, Li, F. 2013. pH-responsive N-heterocyclic carbene copper(I) complexes: syntheses and recoverable applications in the carboxylation of arylboronic esters and benzoxazole with carbon dioxide. Green Chemistry; 15: 635-640.
- 7. Lewis, WG, Green, LG, Radic, Z, Carlier, PR, Taylor, P, Finn, MG, Sharpless, KB. 2002. Click chemistry in situ: Acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angewandte Chemie International Edition; 41: 1053-1057.
- 8. Whiting, M, Muldoon, J, Lin, Y-C, Silverman, SM, Lindstrom, W, Olson, AJ, Kolb, HC, Finn, MG, Sharpless, KB, Elder, JH. 2006. Inhibitors of HIV‐1 protease by using In situ Click chemistry. Angewandte Chemie International Edition; 45: 1435-1439.
- 9. Demir Atlı, D. 2018. Synthesis and characterization of benzimidazolium salts bearing triazole groups. Celal Bayar University Journal of Science; 14: 57-60.
- 10. Golas, PL, Tsarevsky, NV, Matyjaszewski, K. 2008. Structure-reactivity correlation in Click chemistry: Substituent effect on azide reactivity. Macromolecular Rapid Communications; 29: 1167-1171.
- 11. Pasupuleti, BG, Bez, G. 2019. CuI/L-proline catalyzed click reaction in glycerol for the synthesis of 1,2,3-triazoles. Tetrahedron Letters; 60: 142-146.
- 12. Nia, AS, Rana, S, Döhler, D, Jirsa, F, Meister, A, Guadagno, L, Koslowski, E, Bron, M, Binder, WH. 2015. Carbon‐supported copper nanomaterials: Recyclable catalysts for Huisgen [3+2] cycloaddition reactions. Chemistry-A European Journal; 21: 10763-10770.
- 13. Diez-Gonzalez, S, Escudero-Adan, EC, Benet-Buchholz, J, Stevens, ED, Slawin, AMZ, Nolan, SP. 2010. [(NHC)CuX] complexes: Synthesis, characterization and catalytic activities in reduction reactions and Click chemistry. On the advantage of using well-defined catalytic systems. Dalton Transactions; 39: 7595-7606.
- 14. Kaloğlu, N, Özdemir, İ, Günal, S, Özdemir, İ. 2017. Synthesis and antimicrobial activity of bulky 3,5‐di‐tert‐butyl substituent‐containing silver–N‐heterocyclic carbene complexes. Applied Organometallic Chemistry; 31: e3803.
- 15. Kwok, SW, Fotsing, JR, Fraser, RJ, Rodionov, VO, Fokin, VV. 2010. Transition-metal-free catalytic synthesis of 1,5-diaryl-1,2,3-triazoles. Organic Letters; 12: 4217-4219.
- 16. Alvarez, SG, Alvarez, MT. 1997. A practical procedure for the synthesis of alkyl azides at ambient temperature in dimethyl sulfoxide in high purity and yield. Synthesis; 4: 413–414.
- 17. Shao, C, Wang, X, Xu, J, Zhao, J, Zhang, Q, Hu, Y. 2010. Carboxylic Acid-Promoted Copper(I)-Catalyzed Azide-Alkyne Cycloaddition. Journal of Organic Chemistry; 75: 7002-7005.
- 18. Adzima, BJ, Tao, Y, Kloxin, CJ, DeFrorest, CA, Anseth, KS, Bowman, CN. 2011. Spatial and temporal control of the alkyne-azide cycloaddition by photoinitiated Cu(II) reduction. Nature Chemistry; 3: 256-259.
- 19. Wang, D, Li, N, Zhao, M, Shi, W, Ma, C, Chen, B. 2010. Solvent-free synthesis of 1,4-disubstituted 1,2,3-triazoles using a low amount of Cu(PPh3)2NO3 complex. Green Chemistry; 12: 2120-2123.
- 20. Liu, B, Ma, X, Wu, F, Chen, W. 2015. Simple synthesis of neutral and cationic Cu-NHC complexes. Dalton Transactions, 44: 1836-1844.