Research Article
BibTex RIS Cite
Year 2017, Volume: 13 Issue: 2, 445 - 455, 30.06.2017
https://doi.org/10.18466/cbayarfbe.319917

Abstract

References

  • [1] Beghian, LE; Halban, HH. Absolute Cross-sections for the Capture of Neutrons of 200 and 900 keV. Energy. Nature. 1949; 163, 366-367.
  • [2] Macklin, RL; Gibbons, JH. Capture-cross-section studies for 30—220-keV neutrons using a new technique. Phys. Rev. 1967; 159, (4), 1007.
  • [3] Browne, JC; Berman, BL. Neutron-Capture Cross Sections for Te 128 and Te 130 and the Xenon Anomaly in Old Tellurium Ores. Phys. Rev. C 1973; 8, (6), 2405.
  • [4] Wisshak, K; Voss, F; Kappeler, F; Reffo, G. Neutron capture in Te 122, 123, 124: Critical test for s process studies. Phys. Rev. C 1992; 45, (5), 2470.
  • [5] Xia, Y; Gerstenhofer, Th W; Jaag, S; Kappeler, F; Wisshak, K. Neutron cross sections of Te 122, Te 123, and Te 124 between 1 and 60 keV. Phys. Rev. C 1992; 45, (5), 2487.
  • [6] Tomandl, I; Honzatko, J; Von Egidy, T; Wirth, H-F; Belgya, T; Lakatos, M; Szentmiklosi, L; Revay, Zs, Molnar, GL; Firestone, RB ve diğerleri. Phys. Rev. C 2003; 68, (6), 067602.
  • [7] Von Egidy, T; Wirth, H-F; Tomandl, I; Honzatko, J. Phys. Rev. C 2006; 74, (3), 034319.
  • [8] Wirth, H-F; Von Egidy, T; Tomandl, I; Honzatko, J ; Bucurescu, D; Marginean, N; Ponomarev, V Yu ; Hertenberger, R; Eisermann, Y; Graw, G. Nucl. Phys. A 2003; 716, 3-54.
  • [9] Honzatko, J; Bondarenko, V; Tomandl, I; Von Egidy, T ; Wirth, H-F; Bucurescu, D; Ponomarev, V Yu; Marginean, N; Hertenberger, R; Eisermann, Y ve diğerleri. Nucl. Phys. A 2005; 756, (3), 249-307.
  • [10] Iachello, F; Scholten, O. Interacting boson-fermion model of collective states in odd-A nuclei. Phys. Rev. Lett. 1979; 43, (10), 679.
  • [11] Soloviev, Vadim G. Theory of Atomic Nuclei, Quasi-particle and Phonons. CRC Press 1992.
  • [12] Kirsten, T; Richter, H; Jessberger, EK. Double beta decay of 128Te and 130Te: Improved limit on the neutrino restmass. Zeitschrift fur Physik C Particles and Fields. 1983; 16, (3), 189-196.
  • [13] Richardson, JF; Manuel, OK; Sinha, B; Thorpe, RI. Double beta decay of tellurium-130. Nucl . Phys. A 1986; 453, (1), 26-44.
  • [14] Lin, WJ; Manuel, OK; Oliver, LL; Thorpe, RI. Double beta-decay of 82Se and 130Te. Nucl. Phys. A 1986; 457, (2), 285-291.
  • [15] Lin, Wuu-Jyh; Manuel, OK; Muangnoicharoen, Sirinart; Thorpe, RI. Double beta-decay of tellurium-128 and tellurium-130. Nucl. Phys. A 1988; 481, (3), 484-493.
  • [16] Lee, Jauh-Tzuoh; Manuel, OK; Thorpe, RI. Ratio of double beta-decay rates of 128,130 Te. Nucl. Phys. A 529, (1), 29-38.
  • [17] Hennecke, EW; Manuel, OK; Sabu, DD. Double beta decay of Te 128. Phys. Rev. C 1975; 11,(4), 1378.
  • [18] Bernatowicz, T; Brannon, J; Brazzle, R; Cowsik, R ; Hohenberg, C; Podosek, F. Precise determination of relative and absolute betabeta-decay rates of Te 128 and Te 130. Phys. Rev. C 1993; 47, (2), 806.
  • [19] De Laeter, JR; Smith, CL; Rosman, KJR. Critical role of Te 122, 123, 124 in s-process nucleosynthesis. Phys. Rev. C 1994; 49, (2), 1227.
  • [20] Kappeler, Franz; Gallino, Roberto; Bisterzo, Sara ; Aoki, Wako. The s process: Nuclear physics, stellar models, and observations. Rev. of Mod. Phys. 2011; 83, (1), 157.
  • [21] Takahashi, K; Blaum, Klaus; Novikov, Yu. Synthesis of the S-only 122,123,124 Te Isotopes and the Selective Depletion of 123Te by Electron Capture Process in Massive Stars. The Astrophysical Journal. 2016; 819, (2), 118.
  • [22] Naito, S; Tomyo, A; Shima, T; Kii, T; Baba, T ; Takahashi, T; Nagai, Y. KENS keV neutron flux for nuclear astrophysics. Nucl. Inst. and Meth. in Phys. Res. Sec. A. 1999; 423, (2), 404-413.
  • [23] Xu, Yi; Goriely, Stephane; Koning, Arjan J; Hilaire, Stephane. Systematic study of neutron capture including the compound, pre-equilibrium, and direct mechanisms. Phys. Rev. C 2014; 90, (2), 024604.
  • [24] Gilbert A; Cameron AG. A composite nuclear-level density formula with shell corrections. Canadian Journal of Physics. 1965; 43, (8), 1446-1496.
  • [25] Bethe, H. A. Nuclear Physics B. Nuclear Dynamics, Theoretical. Rev. Mod. Phys. 1937; 9, 69.
  • [26] Dilg, W. ve ark. Level density parameters for the back-shifted fermi gas model in the mass range 40<A<250. Nucl. Phys. A 1973; 217, 269.
  • [27] Ignatyuk, A. V; Istekov, K. K; Smirenkin, G. N. Collective effects in level density, and the probability of fission. Sov. J. Nucl. Phys. 1979; 30, (5).
  • [28] Ignatyuk, A. V; Weil J. L; Raman S; Kahane S. Density of discrete levels in Sn 116. Phys. Rev. C. 1993; 47, (4), 1504.
  • [29] Goriely, S; Tondeur, F; Pearson, J. M. Atom. Data Nucl. Data Tables 2001; 77, 311.
  • [30] Goriely, S; Hilaire, S; Koning, A. J. Improved microscopic nuclear level densities within the HFB plus combinatorial method. Phys. Rev. C 2008; 78, 064307.
  • [31] Hilaire, S; Girod, M; Goriely, S; Koning, A. J. Temperature dependent combinatorial level densities with the D1M Gogny force. Phys. Rev. C 2012; 86, 064317.
  • [32] Kopecky, J; Uhl, M. Test of gamma-ray strength functions in nuclear reaction model calculations. Phys. Rev. C 1990; 41, 1941.
  • [33] Brink, D. M. Individual particle and collective aspects of the nuclear photoeffect. Nucl. Phys. 1957; 4, 215.
  • [34] Axel, P. Electric dipole ground-state transition width strength function and 7-Mev photon interactions. Phys. Rev. 1962; 126, 671.
  • [35] R. Capote, R; Herman, M;. Oblozinsky, P; Young, P. G; Goriely, S; Belgya, T; Ignatyuk, A. V; Koning, A. J; Hilaire, S; Plujko, V; Avrigeanu, M; Bersillon, O; Chadwick, M. B; Fukahori, F; Kailas, S. ve diğerleri. RIPL-reference input parameter library for calculation of nuclear reactions and nuclear data evluations. Nucl. Data Sheets 2009; 110, 3107.
  • [36] Goriely, S. Radiative neutron captures by neutron-rich nuclei and the r-process nucleosynthesis. Phys. Lett. B 1998; 436,10.
  • [37] A.J. Koning, A. J;. Hilaire, S; Duijvestijn, M. C. TALYS-1.0. EDP Sciences, 2008; 211-214.

Bazı Tellür İzotoplarının Nötron Yakalama Tesir Kesiti Analizi

Year 2017, Volume: 13 Issue: 2, 445 - 455, 30.06.2017
https://doi.org/10.18466/cbayarfbe.319917

Abstract


Nükleer astrofizikte ve nükleer enerji uygulamalarında
önemli bir yere sahip olan nötron yakalama reaksiyonlarının tesir kesiti
analizini yapmak amacıyla, bu çalışmada 122Te(n,g)123Te,  123Te(n,g)124Te,  124Te(n,g)125Te,  125Te(n,g)126Te,  126Te(n,g)127Te,  128Te(n,g)130Te ve  130Te(n,g)131Te
reaksiyonlarının nötron yakalama tesir kesitleri TALYS 1.6 bilgisayar kodu
kullanılarak hesaplanmıştır. Hesaplamalarda beş farklı şiddet fonksiyonu ve
altı farklı nükleer seviye yoğunluğu modeli kombinasyonu kullanılmıştır. Elde
edilen bu kombinasyonlar birbirleriyle ve bu reaksiyonların deneysel verileri
ile karşılaştırılmıştır.


References

  • [1] Beghian, LE; Halban, HH. Absolute Cross-sections for the Capture of Neutrons of 200 and 900 keV. Energy. Nature. 1949; 163, 366-367.
  • [2] Macklin, RL; Gibbons, JH. Capture-cross-section studies for 30—220-keV neutrons using a new technique. Phys. Rev. 1967; 159, (4), 1007.
  • [3] Browne, JC; Berman, BL. Neutron-Capture Cross Sections for Te 128 and Te 130 and the Xenon Anomaly in Old Tellurium Ores. Phys. Rev. C 1973; 8, (6), 2405.
  • [4] Wisshak, K; Voss, F; Kappeler, F; Reffo, G. Neutron capture in Te 122, 123, 124: Critical test for s process studies. Phys. Rev. C 1992; 45, (5), 2470.
  • [5] Xia, Y; Gerstenhofer, Th W; Jaag, S; Kappeler, F; Wisshak, K. Neutron cross sections of Te 122, Te 123, and Te 124 between 1 and 60 keV. Phys. Rev. C 1992; 45, (5), 2487.
  • [6] Tomandl, I; Honzatko, J; Von Egidy, T; Wirth, H-F; Belgya, T; Lakatos, M; Szentmiklosi, L; Revay, Zs, Molnar, GL; Firestone, RB ve diğerleri. Phys. Rev. C 2003; 68, (6), 067602.
  • [7] Von Egidy, T; Wirth, H-F; Tomandl, I; Honzatko, J. Phys. Rev. C 2006; 74, (3), 034319.
  • [8] Wirth, H-F; Von Egidy, T; Tomandl, I; Honzatko, J ; Bucurescu, D; Marginean, N; Ponomarev, V Yu ; Hertenberger, R; Eisermann, Y; Graw, G. Nucl. Phys. A 2003; 716, 3-54.
  • [9] Honzatko, J; Bondarenko, V; Tomandl, I; Von Egidy, T ; Wirth, H-F; Bucurescu, D; Ponomarev, V Yu; Marginean, N; Hertenberger, R; Eisermann, Y ve diğerleri. Nucl. Phys. A 2005; 756, (3), 249-307.
  • [10] Iachello, F; Scholten, O. Interacting boson-fermion model of collective states in odd-A nuclei. Phys. Rev. Lett. 1979; 43, (10), 679.
  • [11] Soloviev, Vadim G. Theory of Atomic Nuclei, Quasi-particle and Phonons. CRC Press 1992.
  • [12] Kirsten, T; Richter, H; Jessberger, EK. Double beta decay of 128Te and 130Te: Improved limit on the neutrino restmass. Zeitschrift fur Physik C Particles and Fields. 1983; 16, (3), 189-196.
  • [13] Richardson, JF; Manuel, OK; Sinha, B; Thorpe, RI. Double beta decay of tellurium-130. Nucl . Phys. A 1986; 453, (1), 26-44.
  • [14] Lin, WJ; Manuel, OK; Oliver, LL; Thorpe, RI. Double beta-decay of 82Se and 130Te. Nucl. Phys. A 1986; 457, (2), 285-291.
  • [15] Lin, Wuu-Jyh; Manuel, OK; Muangnoicharoen, Sirinart; Thorpe, RI. Double beta-decay of tellurium-128 and tellurium-130. Nucl. Phys. A 1988; 481, (3), 484-493.
  • [16] Lee, Jauh-Tzuoh; Manuel, OK; Thorpe, RI. Ratio of double beta-decay rates of 128,130 Te. Nucl. Phys. A 529, (1), 29-38.
  • [17] Hennecke, EW; Manuel, OK; Sabu, DD. Double beta decay of Te 128. Phys. Rev. C 1975; 11,(4), 1378.
  • [18] Bernatowicz, T; Brannon, J; Brazzle, R; Cowsik, R ; Hohenberg, C; Podosek, F. Precise determination of relative and absolute betabeta-decay rates of Te 128 and Te 130. Phys. Rev. C 1993; 47, (2), 806.
  • [19] De Laeter, JR; Smith, CL; Rosman, KJR. Critical role of Te 122, 123, 124 in s-process nucleosynthesis. Phys. Rev. C 1994; 49, (2), 1227.
  • [20] Kappeler, Franz; Gallino, Roberto; Bisterzo, Sara ; Aoki, Wako. The s process: Nuclear physics, stellar models, and observations. Rev. of Mod. Phys. 2011; 83, (1), 157.
  • [21] Takahashi, K; Blaum, Klaus; Novikov, Yu. Synthesis of the S-only 122,123,124 Te Isotopes and the Selective Depletion of 123Te by Electron Capture Process in Massive Stars. The Astrophysical Journal. 2016; 819, (2), 118.
  • [22] Naito, S; Tomyo, A; Shima, T; Kii, T; Baba, T ; Takahashi, T; Nagai, Y. KENS keV neutron flux for nuclear astrophysics. Nucl. Inst. and Meth. in Phys. Res. Sec. A. 1999; 423, (2), 404-413.
  • [23] Xu, Yi; Goriely, Stephane; Koning, Arjan J; Hilaire, Stephane. Systematic study of neutron capture including the compound, pre-equilibrium, and direct mechanisms. Phys. Rev. C 2014; 90, (2), 024604.
  • [24] Gilbert A; Cameron AG. A composite nuclear-level density formula with shell corrections. Canadian Journal of Physics. 1965; 43, (8), 1446-1496.
  • [25] Bethe, H. A. Nuclear Physics B. Nuclear Dynamics, Theoretical. Rev. Mod. Phys. 1937; 9, 69.
  • [26] Dilg, W. ve ark. Level density parameters for the back-shifted fermi gas model in the mass range 40<A<250. Nucl. Phys. A 1973; 217, 269.
  • [27] Ignatyuk, A. V; Istekov, K. K; Smirenkin, G. N. Collective effects in level density, and the probability of fission. Sov. J. Nucl. Phys. 1979; 30, (5).
  • [28] Ignatyuk, A. V; Weil J. L; Raman S; Kahane S. Density of discrete levels in Sn 116. Phys. Rev. C. 1993; 47, (4), 1504.
  • [29] Goriely, S; Tondeur, F; Pearson, J. M. Atom. Data Nucl. Data Tables 2001; 77, 311.
  • [30] Goriely, S; Hilaire, S; Koning, A. J. Improved microscopic nuclear level densities within the HFB plus combinatorial method. Phys. Rev. C 2008; 78, 064307.
  • [31] Hilaire, S; Girod, M; Goriely, S; Koning, A. J. Temperature dependent combinatorial level densities with the D1M Gogny force. Phys. Rev. C 2012; 86, 064317.
  • [32] Kopecky, J; Uhl, M. Test of gamma-ray strength functions in nuclear reaction model calculations. Phys. Rev. C 1990; 41, 1941.
  • [33] Brink, D. M. Individual particle and collective aspects of the nuclear photoeffect. Nucl. Phys. 1957; 4, 215.
  • [34] Axel, P. Electric dipole ground-state transition width strength function and 7-Mev photon interactions. Phys. Rev. 1962; 126, 671.
  • [35] R. Capote, R; Herman, M;. Oblozinsky, P; Young, P. G; Goriely, S; Belgya, T; Ignatyuk, A. V; Koning, A. J; Hilaire, S; Plujko, V; Avrigeanu, M; Bersillon, O; Chadwick, M. B; Fukahori, F; Kailas, S. ve diğerleri. RIPL-reference input parameter library for calculation of nuclear reactions and nuclear data evluations. Nucl. Data Sheets 2009; 110, 3107.
  • [36] Goriely, S. Radiative neutron captures by neutron-rich nuclei and the r-process nucleosynthesis. Phys. Lett. B 1998; 436,10.
  • [37] A.J. Koning, A. J;. Hilaire, S; Duijvestijn, M. C. TALYS-1.0. EDP Sciences, 2008; 211-214.
There are 37 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Bora Canbula

Publication Date June 30, 2017
Published in Issue Year 2017 Volume: 13 Issue: 2

Cite

APA Canbula, B. (2017). Bazı Tellür İzotoplarının Nötron Yakalama Tesir Kesiti Analizi. Celal Bayar University Journal of Science, 13(2), 445-455. https://doi.org/10.18466/cbayarfbe.319917
AMA Canbula B. Bazı Tellür İzotoplarının Nötron Yakalama Tesir Kesiti Analizi. CBUJOS. June 2017;13(2):445-455. doi:10.18466/cbayarfbe.319917
Chicago Canbula, Bora. “Bazı Tellür İzotoplarının Nötron Yakalama Tesir Kesiti Analizi”. Celal Bayar University Journal of Science 13, no. 2 (June 2017): 445-55. https://doi.org/10.18466/cbayarfbe.319917.
EndNote Canbula B (June 1, 2017) Bazı Tellür İzotoplarının Nötron Yakalama Tesir Kesiti Analizi. Celal Bayar University Journal of Science 13 2 445–455.
IEEE B. Canbula, “Bazı Tellür İzotoplarının Nötron Yakalama Tesir Kesiti Analizi”, CBUJOS, vol. 13, no. 2, pp. 445–455, 2017, doi: 10.18466/cbayarfbe.319917.
ISNAD Canbula, Bora. “Bazı Tellür İzotoplarının Nötron Yakalama Tesir Kesiti Analizi”. Celal Bayar University Journal of Science 13/2 (June 2017), 445-455. https://doi.org/10.18466/cbayarfbe.319917.
JAMA Canbula B. Bazı Tellür İzotoplarının Nötron Yakalama Tesir Kesiti Analizi. CBUJOS. 2017;13:445–455.
MLA Canbula, Bora. “Bazı Tellür İzotoplarının Nötron Yakalama Tesir Kesiti Analizi”. Celal Bayar University Journal of Science, vol. 13, no. 2, 2017, pp. 445-5, doi:10.18466/cbayarfbe.319917.
Vancouver Canbula B. Bazı Tellür İzotoplarının Nötron Yakalama Tesir Kesiti Analizi. CBUJOS. 2017;13(2):445-5.