Research Article
BibTex RIS Cite

The Relationship Between Anaerobic Performance Test and Time of Useful Consciousness Determined in Low-Altitude Chamber (25.000 Feet) with Heart Rate Variability

Year 2023, , 629 - 640, 31.12.2023
https://doi.org/10.33459/cbubesbd.1315753

Abstract

Understanding the relationship between anaerobic performance and time of useful consciousness (TUC) is important for individuals engaged in activities at high altitudes such as climbers, pilots, or astronauts. The aim of this research is to investigate the relationship between anaerobic capacity and TUC determined in a low-altitude chamber (LAC), in terms of performance and heart rate variability (HRV), in healthy males. Thirty male participants were included in the study as volunteers (mean age: 23.2±0.8 years; height: 180.6±6.0 cm; weight: 77.0±8.2 kg). In the scope of the research, participants were exposed to oxygen in a LAC at an atmospheric level of 25.000 feet after body measurements were taken on the first day, and TUC was determined. Anaerobic capacities of the participants were determined the following day using the Wingate Anaerobic test (WAnT). HRV was recorded before, during, and after both tests. According to the findings of our research, the parameter changes of Mean-RR, SDNN, and frequency domain parameters HFnu were significant for both WAnT and LAC in terms of TUC in the pre-test, during the test, and post-test periods. RMSSD change was significant for LAC, while LFnu change was significant for WAnT. In intra-group comparisons, there was a significant difference between pre-test and during the test for WAnT, but no significant difference between during the test and post-test. For LAC, there was a significant difference between pre-test and during the test, as well as between during the test and post-test. In terms of the relationship between anaerobic capacity and time to achieve TUC, TUC showed a non-significant negative correlation with relative peak power (r=-0.03; p=0.86), and non-significant positive correlations with total peak power (r=0.19; p=0.31) and total mean power (r=0.23; p=0.23). The most striking result of this research is the lack of significant relationship between TUC duration and anaerobic performance of the participants. Additionally, in terms of TUC, recovery was significant after TUC in LAC, while no recovery was observed after WAnT. According to the results of this research, anaerobic exercises are not a priority in terms of performance and HRV change to increase TUC. Anaerobic performance may not be the primary criterion for personnel selection for high altitude missions.

References

  • ACSM. (2013). ACSM’s guidelines for exercise testing and prescription. Lippincott Williams & Wilkins.
  • Aebi, M. R., Bourdillon, N., Bron, D., & Millet, G. P. (2020). Minimal ınfluence of hypobaria on heart rate variability in hypoxia and normoxia. Frontiers in physiology, 11, Article 568920. https://doi.org/10.3389/FPHYS.2020.01072/BIBTEX
  • Akgül, M. Ş., Karabiyik, H., & Koz, M. (n.d.). Acute repeated wingate style HIIT exercise in hypoxic conditions does not alter oxidative status in untrained men. Kinesiology Slovevica, 28(3), 154-65. https://doi.org/10.52165/kinsi.28.3.154-165
  • Andersen, A. B., Bejder, J., Bonne, T., Olsen, N. V., & Nordsborg, N. (2020). Repeated wingate sprints is a feasible high-quality training strategy in moderate hypoxia. Plos One, 15(11), Article e0242439. https://doi.org/10.1371/JOURNAL.PONE.0242439
  • Baek, H. J., Cho, C.-H., Cho, J., & Woo, J.-M. (2015). Reliability of ultra-short-term analysis as a surrogate of standard 5-min analysis of heart rate variability. Telemedicine and E-Health, 21(5), 404–414. https://doi.org/10.1089/tmj.2014.0104
  • Cheviron, Z. A., Bachman, G. C., Connaty, A. D., McClelland, G. B., & Storz, J. F. (2012). Regulatory changes contribute to the adaptive enhancement of thermogenic capacity in high-altitude deer mice. Proceedings of the National Academy of Sciences, 109(22), 8635–8640. https://doi.org/10.1073/pnas.1120523109
  • Cipova, L. (2014). Ascent and scenario-based time of useful consciousness (TUC). Florida Institute of Technology.
  • Coudert, J. (1992). Anaerobic performance at altitude. International Journal of Sports Medicine, 13 (Suppl.1), Article 688. https://doi.org/10.1055/S-2007-1024604
  • Czuba, M., Waskiewicz, Z., Zajac, A., Poprzecki, S., Cholewa, J., & Roczniok, R. (2011). The effects of intermittent hypoxic training on aerobic capacity and endurance performance in cyclists. Journal of Sports Science & Medicine, 10(1), 175–183. Retrieved from: http://www.ncbi.nlm.nih.gov/pubmed/24149312
  • DeHart, R. L., & Davis, J. R. (2002). Fundamentals of aerospace medicine. Lippincott Williams & Wilkins.
  • Driller, M. W., Argus, C. K., & Shing, C. M. (2013). The Reliability of a 30-s sprint test on the Wattbike cycle ergometer. International Journal of Sports Physiology and Performance, 8(4), 379–383. https://doi.org/10.1123/ijspp.8.4.379
  • Dufour, S. P., Ponsot, E., Zoll, J., Doutreleau, S., Lonsdorfer-Wolf, E., Geny, B., Lampert, E., Flück, M., Hoppeler, H., Billat, V., Mettauer, B., Richard, R.., & Lonsdorfer, J. (2006). Exercise training in normobaric hypoxia in endurance runners. I. Improvement in aerobic performance capacity. Journal of Applied Physiology, 100(4), 1238–1248. https://doi.org/10.1152/japplphysiol.00742.2005
  • Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., Moss, A. J., & Schwartz, P. J. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17(3), 354–381. https://doi.org/10.1093/oxfordjournals.eurheartj.a014868
  • Friedmann, B., Frese, F., Menold, E., & Bärtsch, P. (2007). Effects of acute moderate hypoxia on anaerobic capacity in endurance-trained runners. European Journal of Applied Physiology, 101(1), 67–73. https://doi.org/10.1007/S00421-007-0473-0
  • Fulco, C. S., Rock, D. O., Cymerman, A., & Vo, M. A. P. (1998). Maximal and submaximal exercise performance at altitude. Aviat Space Environ Med. 69(8), 793-801.
  • Giles, D. A., & Draper, N. (2018). Heart rate variability during exercise: A Comparison of artefact correction methods. The Journal of Strength & Conditioning Research, 32(3), 726–735. https://doi.org/10.1519/JSC.0000000000001800
  • Hayes, J. P., & O’Connor, C. S. (1999). Natural selection on thermogenic capacity of high-altitude deer mice. Evolution, 53(4), 1280–1287. https://doi.org/10.1111/j.1558-5646.1999.tb04540.x
  • Heratika, D., Kekalih, A., Mulyawan, W., Agustina, A., Soemarko, D. S., & Siagian, M. (2020). The effect of the altitude zone on cognitive function for male pilots in indoctrination and aerophysiology training in 2019. International Journal of Applied Pharmaceutics, 12(Special Issue 3), 12–14. https://doi.org/10.22159/ijap.2020.v12s3.39460
  • Kim, C., Ahn, S.C., Lee, M.G., & Kim, D.W. (2001). The relationship between time useful consciousness and various physiological factors in ROKAF pilots. Korean Journal of Aerospace and Environmental Medicine, 11(3), 160–164.
  • Kim, K., Choi, J., Lee, O., Lim, J., & Kim, J. (2022). The effects of body composition, physical fitness on time of useful consciousness in hypobaric hypoxia. Military Medicine. Article 36583703 https://doi.org/10.1093/MILMED/USAC412
  • McClelland, G. B., & Scott, G. R. (2019). Evolved mechanisms of aerobic performance and hypoxia resistance in high-altitude natives. Annual Review of Physiology, 81(1), 561–583. https://doi.org/10.1146/annurev-physiol-021317-121527
  • McMorris, T., Hale, B. J., Barwood, M., Costello, J., & Corbett, J. (2017). Effect of acute hypoxia on cognition: A Systematic review and meta-regression analysis. Neuroscience & Biobehavioral Reviews, 74, 225–232. https://doi.org/10.1016/j.neubiorev.2017.01.019
  • Meeuwsen, T., Hendriksen, I. J. M., & Holewijn, M. (2001). Training-induced increases in sea-level performance are enhanced by acute intermittent hypobaric hypoxia. European Journal of Applied Physiology, 84(4), 283–290. https://doi.org/10.1007/S004210000363/METRICS
  • Petrassi, F. A., Hodkinson, P. D., Walters, P. L., & Gaydos, S. J. (2012). Hypoxic hypoxia at moderate altitudes: Review of the state of the science. Aviation, Space, and Environmental Medicine, 83(10), 975–984. https://doi.org/10.3357/ASEM.3315.2012
  • Plews, D. J., Laursen, P. B., Kilding, A. E., & Buchheit, M. (2012). Heart rate variability in elite triathletes, is variation in variability the key to effective training? A Case comparison. European Journal of Applied Physiology, 112(11), 3729–3741. https://doi.org/10.1007/s00421-012-2354-4
  • Prommer, N., Heinicke, K., Viola, T., Cajigal, J., Behn, C., & Schmidt, W. F. J. (2007). Long-term intermittent hypoxia increases O2 transport capacity but not VO2max. High Altitude Medicine & Biology, 8(3), 225–235. https://doi.org/10.1089/ham.2007.8309
  • Ramos-Campo, D. J., Martínez-Guardado, I., Olcina, G., Marín-Pagán, C., Martínez-Noguera, F. J., Carlos-Vivas, J., Alcaraz, P. E., & Rubio, J. Á. (2018). Effect of high-intensity resistance circuit-based training in hypoxia on aerobic performance and repeat sprint ability. Scandinavian Journal of Medicine & Science in Sports, 28(10), 2135–2143. https://doi.org/10.1111/sms.13223
  • Self, D. A., Mandella, J. G., White, V. L., & Burian, D. (2013). Physiological determinants of human acute hypoxia tolerance. (No. DOT/FAA/AM-13/22). United States. Office of Aerospace Medicine. https://rosap.ntl.bts.gov/view/dot/26767
  • Shaw, D. M., Cabre, G., & Gant, N. (2021). Hypoxic hypoxia and brain function in military aviation: Basic physiology and applied perspectives. Frontiers in Physiology, 12, Article 698. https://doi.org/10.3389/fphys.2021.665821
  • Smith, A. M. (2008). Hypoxia symptoms in military aircrew: Long-term recall vs. acute experience in training. Aviation, Space, and Environmental Medicine, 79(1), 54–57. https://doi.org/10.3357/ASEM.2013.2008
  • Sucipta, I. J., Adi, N. P., & Kaunang, D. (2018). Relationship of fatigue, physical fitness and cardiovascular endurance to the hypoxic response of military pilots in Indonesia. Journal of Physics: Conference Series, 1073(4), Article 042044. https://doi.org/10.1088/1742-6596/1073/4/042044
  • Tadibi, V., Dehnert, C., Menold, E., & Bärtsch, P. (2007). Unchanged anaerobic and aerobic performance after short-term intermittent hypoxia. Medicine & Science in Sports & Exercise, 39(5), 858–864. https://doi.org/10.1249/mss.0b013e31803349d9
  • Takei, N., Kakinoki, K., Girard, O., & Hatta, H. (2020). Short-term repeated wingate training in hypoxia and normoxia in sprinters. Frontiers in Sports and Active Living, 2, Article 531163. https://doi.org/10.3389/FSPOR.2020.00043/BIBTEX
  • Taralov, Z. Z., Terziyski, K. V, & Kostianev, S. S. (2015). Heart rate variability as a method for assessment of the autonomic nervous system and the adaptations to different physiological and pathological conditions. Folia Medica, 57(3–4), 173–180. https://doi.org/10.1515/folmed-2015-0036
  • Tarvainen, M. P., Niskanen, J.-P., Lipponen, J. A., Ranta-Aho, P. O., & Karjalainen, P. A. (2014). Kubios HRV–heart rate variability analysis software. Computer Methods and Programs in Biomedicine, 113(1), 210–220. https://doi.org/10.1016/j.cmpb.2013.07.024
  • Taylor, L., Watkins, S. L., Marshall, H., Dascombe, B. J., & Foster, J. (2016). The impact of different environmental conditions on cognitive function: A Focused review. Frontiers in Physiology, 6, Article 372. https://doi.org/10.3389/fphys.2015.00372
  • Yan, X. (2014). Cognitive impairments at high altitudes and adaptation. High Altitude Medicine & Biology, 15(2), 141–145. https://doi.org/10.1089/ham.2014.1009
  • Yıldız, S. A. (2012). Aerobik ve anaerobik kapasitenin anlamı nedir? Solunum Dergisi, 14(1), 1–8.
  • Zupan, M. F., Arata, A. W., Dawson, L. H., Wile, A. L., Payn, T. L., & Hannon, M. E. (2009). Wingate anaerobic test peak power and anaerobic capacity classifications for men and women intercollegiate athletes. Journal of Strength and Conditioning Research, 23(9), 2598–2604. https://doi.org/10.1519/JSC.0b013e3181b1b21b

Anaerobik Performans Testi ile Alçak Basınç Odasında (25.000 Feet) Belirlenen Faydalanılabilir Bilinç Zamanının Kalp Atım Hızı Değişkenliği İlişkisi

Year 2023, , 629 - 640, 31.12.2023
https://doi.org/10.33459/cbubesbd.1315753

Abstract

Anaerobik performans ile faydalanılabilir bilinç zamanı (TUC) arasındaki ilişkiyi anlamak, dağcılar, pilotlar veya astronotlar gibi yüksek irtifalarda faaliyetlerde bulunan kişiler için önemlidir. Bu araştırmanın amacı, sağlıklı erkeklerde anaerobik kapasite ile alçak basınç odasında (LAC) belirlenen TUC arasındaki ilişkiyi performans ve kalp hızı değişkenliği (HRV) açısından incelemektir. Çalışmaya gönüllü olarak 30 erkek katılımcı dahil edildi (ortalama yaş: 23.2±0.8 yıl; boy: 180.6±6.0 cm; kilo: 77.0±8.2 kg). Araştırma kapsamında katılımcılar, ilk gün vücut ölçüleri alındıktan sonra 25.000 fit atmosferik seviyede bir LAC içinde oksijene maruz bırakıldı ve TUC belirlendi. Katılımcıların anaerobik kapasiteleri ertesi gün Wingate Anaerobik testi (WAnT) kullanılarak belirlendi. HRV her iki testten önce, sırasında ve sonrasında kaydedildi. Araştırmamızın bulgularına göre, Mean-RR'nin parametre değişimleri, SDNN ve frekans domeni parametreleri HFnu hem WAnT hem de LAC için ön test, test sırasında ve son test dönemlerinde TUC açısından anlamlıydı. RMSSD değişikliği LAC için önemliyken, LFnu değişikliği WAnT için önemliydi. Grup içi karşılaştırmalarda, WAnT için ön test ve test sırası arasında anlamlı bir fark bulunurken, test sırasında ve son test arasında anlamlı bir fark bulunmadı. LAC için, ön test ile test sırasında ve ayrıca test sırasında ve son test arasında anlamlı bir fark vardı. Anaerobik kapasite ile TUC'a ulaşma süresi arasındaki ilişki açısından, TUC, relatif zirve gücü ile anlamlı olmayan bir negatif korelasyon (r=-0.03; p=0.86) ve toplam zirve gücü (r=0.19; p=0.31) ve toplam ortalama güç (r=0.23; p=0.23) ile anlamlı olmayan pozitif korelasyon gösterdi. Bu araştırmanın en çarpıcı sonucu, katılımcıların TUC süresi ile anaerobik performansları arasında anlamlı bir ilişkinin olmamasıdır. Bunlara ek olarak, TUC açısından LAC'de TUC sonrası düzelme anlamlı iken, WAnT sonrası düzelme gözlenmedi. Bu araştırmanın sonuçlarına göre, anaerobik egzersizler TUC'u artırmak için performans ve HRV değişimi açısından bir öncelik değildir. Anaerobik performans, yüksek irtifa görevleri için personel seçiminde birincil kriter olmayabilir.

References

  • ACSM. (2013). ACSM’s guidelines for exercise testing and prescription. Lippincott Williams & Wilkins.
  • Aebi, M. R., Bourdillon, N., Bron, D., & Millet, G. P. (2020). Minimal ınfluence of hypobaria on heart rate variability in hypoxia and normoxia. Frontiers in physiology, 11, Article 568920. https://doi.org/10.3389/FPHYS.2020.01072/BIBTEX
  • Akgül, M. Ş., Karabiyik, H., & Koz, M. (n.d.). Acute repeated wingate style HIIT exercise in hypoxic conditions does not alter oxidative status in untrained men. Kinesiology Slovevica, 28(3), 154-65. https://doi.org/10.52165/kinsi.28.3.154-165
  • Andersen, A. B., Bejder, J., Bonne, T., Olsen, N. V., & Nordsborg, N. (2020). Repeated wingate sprints is a feasible high-quality training strategy in moderate hypoxia. Plos One, 15(11), Article e0242439. https://doi.org/10.1371/JOURNAL.PONE.0242439
  • Baek, H. J., Cho, C.-H., Cho, J., & Woo, J.-M. (2015). Reliability of ultra-short-term analysis as a surrogate of standard 5-min analysis of heart rate variability. Telemedicine and E-Health, 21(5), 404–414. https://doi.org/10.1089/tmj.2014.0104
  • Cheviron, Z. A., Bachman, G. C., Connaty, A. D., McClelland, G. B., & Storz, J. F. (2012). Regulatory changes contribute to the adaptive enhancement of thermogenic capacity in high-altitude deer mice. Proceedings of the National Academy of Sciences, 109(22), 8635–8640. https://doi.org/10.1073/pnas.1120523109
  • Cipova, L. (2014). Ascent and scenario-based time of useful consciousness (TUC). Florida Institute of Technology.
  • Coudert, J. (1992). Anaerobic performance at altitude. International Journal of Sports Medicine, 13 (Suppl.1), Article 688. https://doi.org/10.1055/S-2007-1024604
  • Czuba, M., Waskiewicz, Z., Zajac, A., Poprzecki, S., Cholewa, J., & Roczniok, R. (2011). The effects of intermittent hypoxic training on aerobic capacity and endurance performance in cyclists. Journal of Sports Science & Medicine, 10(1), 175–183. Retrieved from: http://www.ncbi.nlm.nih.gov/pubmed/24149312
  • DeHart, R. L., & Davis, J. R. (2002). Fundamentals of aerospace medicine. Lippincott Williams & Wilkins.
  • Driller, M. W., Argus, C. K., & Shing, C. M. (2013). The Reliability of a 30-s sprint test on the Wattbike cycle ergometer. International Journal of Sports Physiology and Performance, 8(4), 379–383. https://doi.org/10.1123/ijspp.8.4.379
  • Dufour, S. P., Ponsot, E., Zoll, J., Doutreleau, S., Lonsdorfer-Wolf, E., Geny, B., Lampert, E., Flück, M., Hoppeler, H., Billat, V., Mettauer, B., Richard, R.., & Lonsdorfer, J. (2006). Exercise training in normobaric hypoxia in endurance runners. I. Improvement in aerobic performance capacity. Journal of Applied Physiology, 100(4), 1238–1248. https://doi.org/10.1152/japplphysiol.00742.2005
  • Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., Moss, A. J., & Schwartz, P. J. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17(3), 354–381. https://doi.org/10.1093/oxfordjournals.eurheartj.a014868
  • Friedmann, B., Frese, F., Menold, E., & Bärtsch, P. (2007). Effects of acute moderate hypoxia on anaerobic capacity in endurance-trained runners. European Journal of Applied Physiology, 101(1), 67–73. https://doi.org/10.1007/S00421-007-0473-0
  • Fulco, C. S., Rock, D. O., Cymerman, A., & Vo, M. A. P. (1998). Maximal and submaximal exercise performance at altitude. Aviat Space Environ Med. 69(8), 793-801.
  • Giles, D. A., & Draper, N. (2018). Heart rate variability during exercise: A Comparison of artefact correction methods. The Journal of Strength & Conditioning Research, 32(3), 726–735. https://doi.org/10.1519/JSC.0000000000001800
  • Hayes, J. P., & O’Connor, C. S. (1999). Natural selection on thermogenic capacity of high-altitude deer mice. Evolution, 53(4), 1280–1287. https://doi.org/10.1111/j.1558-5646.1999.tb04540.x
  • Heratika, D., Kekalih, A., Mulyawan, W., Agustina, A., Soemarko, D. S., & Siagian, M. (2020). The effect of the altitude zone on cognitive function for male pilots in indoctrination and aerophysiology training in 2019. International Journal of Applied Pharmaceutics, 12(Special Issue 3), 12–14. https://doi.org/10.22159/ijap.2020.v12s3.39460
  • Kim, C., Ahn, S.C., Lee, M.G., & Kim, D.W. (2001). The relationship between time useful consciousness and various physiological factors in ROKAF pilots. Korean Journal of Aerospace and Environmental Medicine, 11(3), 160–164.
  • Kim, K., Choi, J., Lee, O., Lim, J., & Kim, J. (2022). The effects of body composition, physical fitness on time of useful consciousness in hypobaric hypoxia. Military Medicine. Article 36583703 https://doi.org/10.1093/MILMED/USAC412
  • McClelland, G. B., & Scott, G. R. (2019). Evolved mechanisms of aerobic performance and hypoxia resistance in high-altitude natives. Annual Review of Physiology, 81(1), 561–583. https://doi.org/10.1146/annurev-physiol-021317-121527
  • McMorris, T., Hale, B. J., Barwood, M., Costello, J., & Corbett, J. (2017). Effect of acute hypoxia on cognition: A Systematic review and meta-regression analysis. Neuroscience & Biobehavioral Reviews, 74, 225–232. https://doi.org/10.1016/j.neubiorev.2017.01.019
  • Meeuwsen, T., Hendriksen, I. J. M., & Holewijn, M. (2001). Training-induced increases in sea-level performance are enhanced by acute intermittent hypobaric hypoxia. European Journal of Applied Physiology, 84(4), 283–290. https://doi.org/10.1007/S004210000363/METRICS
  • Petrassi, F. A., Hodkinson, P. D., Walters, P. L., & Gaydos, S. J. (2012). Hypoxic hypoxia at moderate altitudes: Review of the state of the science. Aviation, Space, and Environmental Medicine, 83(10), 975–984. https://doi.org/10.3357/ASEM.3315.2012
  • Plews, D. J., Laursen, P. B., Kilding, A. E., & Buchheit, M. (2012). Heart rate variability in elite triathletes, is variation in variability the key to effective training? A Case comparison. European Journal of Applied Physiology, 112(11), 3729–3741. https://doi.org/10.1007/s00421-012-2354-4
  • Prommer, N., Heinicke, K., Viola, T., Cajigal, J., Behn, C., & Schmidt, W. F. J. (2007). Long-term intermittent hypoxia increases O2 transport capacity but not VO2max. High Altitude Medicine & Biology, 8(3), 225–235. https://doi.org/10.1089/ham.2007.8309
  • Ramos-Campo, D. J., Martínez-Guardado, I., Olcina, G., Marín-Pagán, C., Martínez-Noguera, F. J., Carlos-Vivas, J., Alcaraz, P. E., & Rubio, J. Á. (2018). Effect of high-intensity resistance circuit-based training in hypoxia on aerobic performance and repeat sprint ability. Scandinavian Journal of Medicine & Science in Sports, 28(10), 2135–2143. https://doi.org/10.1111/sms.13223
  • Self, D. A., Mandella, J. G., White, V. L., & Burian, D. (2013). Physiological determinants of human acute hypoxia tolerance. (No. DOT/FAA/AM-13/22). United States. Office of Aerospace Medicine. https://rosap.ntl.bts.gov/view/dot/26767
  • Shaw, D. M., Cabre, G., & Gant, N. (2021). Hypoxic hypoxia and brain function in military aviation: Basic physiology and applied perspectives. Frontiers in Physiology, 12, Article 698. https://doi.org/10.3389/fphys.2021.665821
  • Smith, A. M. (2008). Hypoxia symptoms in military aircrew: Long-term recall vs. acute experience in training. Aviation, Space, and Environmental Medicine, 79(1), 54–57. https://doi.org/10.3357/ASEM.2013.2008
  • Sucipta, I. J., Adi, N. P., & Kaunang, D. (2018). Relationship of fatigue, physical fitness and cardiovascular endurance to the hypoxic response of military pilots in Indonesia. Journal of Physics: Conference Series, 1073(4), Article 042044. https://doi.org/10.1088/1742-6596/1073/4/042044
  • Tadibi, V., Dehnert, C., Menold, E., & Bärtsch, P. (2007). Unchanged anaerobic and aerobic performance after short-term intermittent hypoxia. Medicine & Science in Sports & Exercise, 39(5), 858–864. https://doi.org/10.1249/mss.0b013e31803349d9
  • Takei, N., Kakinoki, K., Girard, O., & Hatta, H. (2020). Short-term repeated wingate training in hypoxia and normoxia in sprinters. Frontiers in Sports and Active Living, 2, Article 531163. https://doi.org/10.3389/FSPOR.2020.00043/BIBTEX
  • Taralov, Z. Z., Terziyski, K. V, & Kostianev, S. S. (2015). Heart rate variability as a method for assessment of the autonomic nervous system and the adaptations to different physiological and pathological conditions. Folia Medica, 57(3–4), 173–180. https://doi.org/10.1515/folmed-2015-0036
  • Tarvainen, M. P., Niskanen, J.-P., Lipponen, J. A., Ranta-Aho, P. O., & Karjalainen, P. A. (2014). Kubios HRV–heart rate variability analysis software. Computer Methods and Programs in Biomedicine, 113(1), 210–220. https://doi.org/10.1016/j.cmpb.2013.07.024
  • Taylor, L., Watkins, S. L., Marshall, H., Dascombe, B. J., & Foster, J. (2016). The impact of different environmental conditions on cognitive function: A Focused review. Frontiers in Physiology, 6, Article 372. https://doi.org/10.3389/fphys.2015.00372
  • Yan, X. (2014). Cognitive impairments at high altitudes and adaptation. High Altitude Medicine & Biology, 15(2), 141–145. https://doi.org/10.1089/ham.2014.1009
  • Yıldız, S. A. (2012). Aerobik ve anaerobik kapasitenin anlamı nedir? Solunum Dergisi, 14(1), 1–8.
  • Zupan, M. F., Arata, A. W., Dawson, L. H., Wile, A. L., Payn, T. L., & Hannon, M. E. (2009). Wingate anaerobic test peak power and anaerobic capacity classifications for men and women intercollegiate athletes. Journal of Strength and Conditioning Research, 23(9), 2598–2604. https://doi.org/10.1519/JSC.0b013e3181b1b21b
There are 39 citations in total.

Details

Primary Language English
Subjects Sports Science and Exercise (Other)
Journal Section Articles
Authors

Tuncay Alparslan 0000-0003-2164-0085

Nuran Küçük 0000-0002-2397-5826

Ramiz Arabacı 0000-0001-8403-5742

Deniz Şimşek 0000-0001-5452-6006

Levent Şenol 0000-0002-3615-0647

Nazım Ata 0000-0002-7200-3003

Yusuf Türk 0000-0003-2590-4893

Early Pub Date November 25, 2023
Publication Date December 31, 2023
Submission Date June 20, 2023
Acceptance Date October 8, 2023
Published in Issue Year 2023

Cite

APA Alparslan, T., Küçük, N., Arabacı, R., Şimşek, D., et al. (2023). The Relationship Between Anaerobic Performance Test and Time of Useful Consciousness Determined in Low-Altitude Chamber (25.000 Feet) with Heart Rate Variability. CBÜ Beden Eğitimi Ve Spor Bilimleri Dergisi, 18(2), 629-640. https://doi.org/10.33459/cbubesbd.1315753
AMA Alparslan T, Küçük N, Arabacı R, Şimşek D, Şenol L, Ata N, Türk Y. The Relationship Between Anaerobic Performance Test and Time of Useful Consciousness Determined in Low-Altitude Chamber (25.000 Feet) with Heart Rate Variability. CBÜ BESBD. December 2023;18(2):629-640. doi:10.33459/cbubesbd.1315753
Chicago Alparslan, Tuncay, Nuran Küçük, Ramiz Arabacı, Deniz Şimşek, Levent Şenol, Nazım Ata, and Yusuf Türk. “The Relationship Between Anaerobic Performance Test and Time of Useful Consciousness Determined in Low-Altitude Chamber (25.000 Feet) With Heart Rate Variability”. CBÜ Beden Eğitimi Ve Spor Bilimleri Dergisi 18, no. 2 (December 2023): 629-40. https://doi.org/10.33459/cbubesbd.1315753.
EndNote Alparslan T, Küçük N, Arabacı R, Şimşek D, Şenol L, Ata N, Türk Y (December 1, 2023) The Relationship Between Anaerobic Performance Test and Time of Useful Consciousness Determined in Low-Altitude Chamber (25.000 Feet) with Heart Rate Variability. CBÜ Beden Eğitimi ve Spor Bilimleri Dergisi 18 2 629–640.
IEEE T. Alparslan, N. Küçük, R. Arabacı, D. Şimşek, L. Şenol, N. Ata, and Y. Türk, “The Relationship Between Anaerobic Performance Test and Time of Useful Consciousness Determined in Low-Altitude Chamber (25.000 Feet) with Heart Rate Variability”, CBÜ BESBD, vol. 18, no. 2, pp. 629–640, 2023, doi: 10.33459/cbubesbd.1315753.
ISNAD Alparslan, Tuncay et al. “The Relationship Between Anaerobic Performance Test and Time of Useful Consciousness Determined in Low-Altitude Chamber (25.000 Feet) With Heart Rate Variability”. CBÜ Beden Eğitimi ve Spor Bilimleri Dergisi 18/2 (December 2023), 629-640. https://doi.org/10.33459/cbubesbd.1315753.
JAMA Alparslan T, Küçük N, Arabacı R, Şimşek D, Şenol L, Ata N, Türk Y. The Relationship Between Anaerobic Performance Test and Time of Useful Consciousness Determined in Low-Altitude Chamber (25.000 Feet) with Heart Rate Variability. CBÜ BESBD. 2023;18:629–640.
MLA Alparslan, Tuncay et al. “The Relationship Between Anaerobic Performance Test and Time of Useful Consciousness Determined in Low-Altitude Chamber (25.000 Feet) With Heart Rate Variability”. CBÜ Beden Eğitimi Ve Spor Bilimleri Dergisi, vol. 18, no. 2, 2023, pp. 629-40, doi:10.33459/cbubesbd.1315753.
Vancouver Alparslan T, Küçük N, Arabacı R, Şimşek D, Şenol L, Ata N, Türk Y. The Relationship Between Anaerobic Performance Test and Time of Useful Consciousness Determined in Low-Altitude Chamber (25.000 Feet) with Heart Rate Variability. CBÜ BESBD. 2023;18(2):629-40.