Research Article
BibTex RIS Cite

Wingate Testi Sırasında Ultra Kısa Süreli Kalp Atış Hızı Değişkenliğinin Non-invaziv Değerlendirilmesi

Year 2022, Volume: 17 Issue: 2, 344 - 356, 31.12.2022
https://doi.org/10.33459/cbubesbd.1131190

Abstract

Bu çalışmanın amacı, sedanter sağlıklı erkeklerin Wingate Anaerobik Testi (WAnT) (30-sn) sırasındaki ultra kısa kalp hızı değişkenliğini (HRV) ve WAnT sonrası ilk 60-saniyede parasempatik reaktivasyonu araştırmaktır. Araştırmaya 101 sağlıklı erkek katıldı (Ortalama±SS; Yaş=28.9±4.8 yıl, Boy=176.5±5.5 cm, Ağırlık=89.8±8.8 kg). Anaerobik güç ve kapasite WAnT ile ölçülmüştür. Kalp hızı değişkenliği (KHD) testten önce 60 saniye, test süresince 30 saniye ve testten sonra 60 saniye olarak kaydedildi. KHD, Polar V800 GPS Spor Saati ile Kalp Atış Hızı Monitörü ve Polar H7 bandı ile ölçülmüştür. Test öncesi-sırası-sonrası HRV parametrelerini karşılaştırmak için tekrarlanan tek yönlü varyans analizi (ANOVA) kullanıldı. İkili karşılaştırmalar Bonferroni testi ile belirlendi. Kalp atış hızı değişkenliği egzersiz verileri ile ortalama güç arasındaki ilişki Pearson korelasyon testi ile değerlendirildi. Etki Büyüklüğü Cohen's d hesaplandı. Bu çalışmanın ana bulgusu, ön test (60 saniye) HRV değerlerinin test (30 saniye) ve son test (60 saniye) ölçümleri sırasında önemli ölçüde düşmeye devam etmesidir (p<0.05). Ayrıca, test sırasında performans ve KHD verileri arasında anlamlı bir korelasyon gözlenmedi (r=-0.08, p>0.05). Sonuç olarak, bu çalışmada 30 saniyelik WAnT’tan sonra 60 saniyelik süre boyunca KHD iyileşmesi belirtisi gözlemlenmemiştir. Maksimum anaerobikten testten sonraki ilk 60 saniyede kaydedilen HRV sedanter sağlıklı erkeklerde egzersiz programının otonom sinir sisteminin parasempatik aktivitesinde bir dengesizlik sergilediği düşünülebilir.

References

  • ACSM. (2013). ACSM’s Guidelines for Exercise Testing and Prescription. Lippincott Williams & Wilkins.
  • Ansell, S. K. D., Jester, M., Tryggestad, J. B., & Short, K. R. (2020). A pilot study of the effects of a high‐intensity aerobic exercise session on heart rate variability and arterial compliance in adolescents with or without type 1 diabetes. Pediatric Diabetes, 21(3), 486–495. https://doi.org/doi.org/10.1111/PEDI.12983
  • Bar-Or, O. (1987). The Wingate anaerobic test an update on methodology, reliability and validity. Sports Medicine, 4(6), 381–394. https://doi.org/10.2165/00007256-198704060-00001
  • Barak, O. F., Jakovljevic, D. G., Gacesa, J. Z. P., Ovcin, Z. B., Brodie, D. A., & Grujic, N. G. (2010). Heart rate variability before and after cycle exercise in relation to different body positions. Journal of Sports Science & Medicine, 9(2), 176–182
  • Barak, O. F., Klasnja, A., POPADIC GACESA, J., & GRUJIC, N. G. (2014). Gender differences in parasympathetic reactivation during recovery from Wingate anaerobic test. Periodicum Biologorum, 116(1), 53–58
  • Barantke, M., Krauss, T., Ortak, J., Lieb, W., Reppel, M., Burgdorf, C., Pramstaller, P. P., Schunkert, H., & Bonnemeier, H. (2008). Effects of gender and aging on differential autonomic responses to orthostatic maneuvers. Journal of Cardiovascular Electrophysiology, 19(12), 1296–1303. https://doi.org/10.1111/j.1540-8167.2008.01257.x
  • Batterham, A. M., & Hopkins, W. G. (2006). Making meaningful inferences about magnitudes. International Journal of Sports Physiology and Performance, 1(1), 50–57. https://doi.org/10.1123/ijspp.1.1.50
  • Bosquet, L., Papelier, Y., Leger, L., & Legros, P. (2003). Night heart rate variability during overtraining in male endurance athletes. Journal of Sports Medicine and Physical Fitness, 43(4), 506–512
  • Buchheit, M., Laursen, P. B., & Ahmaidi, S. (2007). Parasympathetic reactivation after repeated sprint exercise. American Journal of Physiology-Heart and Circulatory Physiology, 293(1), H133–H141. https://doi.org/10.1152/ajpheart.00062.2007
  • Chalencon, S., Busso, T., Lacour, J.-R., Garet, M., Pichot, V., Connes, P., Gabel, C. P., Roche, F., & Barthélémy, J. C. (2012). A model for the training effects in swimming demonstrates a strong relationship between parasympathetic activity, performance and index of fatigue. PloS One, 7(12), e52636. https://doi.org/10.1371/journal.pone.0052636
  • Chen, J.-Y., Lee, Y. L., Tsai, W.-C., Lee, C.-H., Chen, P.-S., Li, Y.-H., Tsai, L.-M., Chen, J.-H., & Lin, L.-J. (2011). Cardiac autonomic functions derived from short-term heart rate variability recordings associated with heart rate recovery after treadmill exercise test in young individuals. Heart and Vessels, 26(3), 282–288. https://doi.org/10.1536/ihj.51.105
  • Coote, J. H. (2010). Recovery of heart rate following intense dynamic exercise. Experimental Physiology, 95(3), 431–440. https://doi.org/10.1113/expphysiol.2009.047548
  • De Oliveira, T. P., de Alvarenga Mattos, R., da Silva, R. B. F., Rezende, R. A., & de Lima, J. R. P. (2013). Absence of parasympathetic reactivation after maximal exercise. Clinical Physiology and Functional Imaging, 33(2), 143–149. https://doi.org/10.1111/cpf.12009
  • Dong, J. (2016). The role of heart rate variability in sports physiology. Experimental and Therapeutic Medicine, 11(5), 1531–1536. https://doi.org/10.3892/etm.2016.3104
  • Dorey, T. W., O’Brien, M. W., & Kimmerly, D. S. (2019). The influence of aerobic fitness on electrocardiographic and heart rate variability parameters in young and older adults. Autonomic Neuroscience, 217(60-70). https://doi.org/10.1016/j.autneu.2019.01.004
  • Driller, M. W., Argus, C. K., & Shing, C. M. (2013). The reliability of a 30-s sprint test on the Wattbike cycle ergometer. International Journal of Sports Physiology and Performance, 8(4), 379–383. https://doi.org/10.1123/ijspp.8.4.379
  • Edmonds, R. C., Sinclair, W. H., & Leicht, A. S. (2013). Effect of a training week on heart rate variability in elite youth rugby league players. International Journal of Sports Medicine, 34(12), 1087–1092. https://doi.org/10.1055/s-0033-1333720
  • ESC, T. F. O. F., & Naspe, T. (1996). Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur. Heart J, 17, 354–381
  • Esco, M R, & Flatt, A. A. (2014). Ultra-short-term heart rate variability indexes at rest and post-exercise in athletes: evaluating the agreement with accepted recommendations. Journal of Sports Science & Medicine, 13(3), 535–541
  • Esco, Michael R, Williford, H. N., Flatt, A. A., Freeborn, T. J., & Nakamura, F. Y. (2018). Ultra-shortened time-domain HRV parameters at rest and following exercise in athletes: an alternative to frequency computation of sympathovagal balance. European Journal of Applied Physiology, 118(1), 175–184. https://doi.org/10.1007/s00421-017-3759-x
  • Flatt, A. A., & Esco, M. R. (2013). Validity of the ithleteTM smart phone application for determining ultra-short-term heart rate variability. Journal of Human Kinetics, 39(1), 85–92. https://doi.org/10.2478/hukin-2013-0071
  • Giles, D., Draper, N., & Neil, W. (2016). Validity of the Polar V800 heart rate monitor to measure RR intervals at rest. European Journal of Applied Physiology, 116(3), 563–571. https://doi.org/10.1007/s00421-015-3303-9
  • Gladwell, V. F., Sandercock, G. R. H., & Birch, S. L. (2010). Cardiac vagal activity following three intensities of exercise in humans. Clinical Physiology and Functional Imaging, 30(1), 17–22. https://doi.org/10.1111/j.1475-097X.2009.00899.x
  • Goldberger, J. J., Le, F. K., Lahiri, M., Kannankeril, P. J., Ng, J., & Kadish, A. H. (2006). Assessment of parasympathetic reactivation after exercise. American Journal of Physiology-Heart and Circulatory Physiology, 290(6), 2446–2452. https://doi.org/10.1152/ajpheart.01118.2005
  • Hnidawei, M. A., MjallI, M., & Zayed, Z. (2010). The upper limit of physiological cardiac hypertrophy in elite male athletes. American Journal of Applied Sciences, 7(10), 592–597. https://doi.org/10.1007/s00421-004-1052-2
  • Hottenrott, K., Hoos, O., & Esperer, H. D. (2006). Heart rate variability and physical exercise. Current status. Herz, 31(6), 544–552. https://doi.org/10.1007/s00059-006-2855-1
  • Javorka, M., Zila, I., Balharek, T., & Javorka, K. (2002). Heart rate recovery after exercise: relations to heart rate variability and complexity. Brazilian Journal of Medical and Biological Research, 35, 991–1000. https://doi.org/10.1590/s0100-879x2002000800018
  • Jia, Z., Bonde, A., Li, S., Xu, C., Wang, J., Zhang, Y., Howard, R. E., & Zhang, P. (2017). Monitoring a person’s heart rate and respiratory rate on a shared bed using geophones. Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems, 1–14. https://doi.org/10.1145/3131672.3131679
  • Kannankeril, P. J., & Goldberger, J. J. (2002). Parasympathetic effects on cardiac electrophysiology during exercise and recovery. American Journal of Physiology-Heart and Circulatory Physiology, 282(6), 2091–2098. https://doi.org/10.1152/ajpheart.00825.2001
  • Kiviniemi, A. M., Hautala, A. J., Mäkikallio, T. H., Seppänen, T., Huikuri, H. V, & Tulppo, M. P. (2006). Cardiac vagal outflow after aerobic training by analysis of high-frequency oscillation of the R–R interval. European Journal of Applied Physiology, 96(6), 686–692. https://doi.org/10.1007/s00421-005-0130-4
  • Makivić, B., Nikić Djordjević, M., & Willis, M. S. (2013). Heart Rate Variability (HRV) as a Tool for Diagnostic and Monitoring Performance in Sport and Physical Activities. Journal of Exercise Physiology Online, 16(3), 103–131
  • Mamatha, S. D., Rajalakshmi, R., Rajesh Kumar, T., & Smitha, M. C. (2019). Effect of aerobic exercise and yoga on heart rate variability (HRV) parameters in young adults. International Journal of Physiology, 7(1), 19–22. https://doi.org/10.3389/fphys.2021.657274
  • Marek J. Thomas Bigger A., John Camm, Robert E., Kleiger Alberto Malliani Arthur J., Moss Peter, J. Schwartz, M., & Cardiology, T. F. of the E. S. of. (1996). Heart rate variability, standards of measurement, physiological interpretation, and clinical use. Circulation, 93(5), 1043–1065. https://doi.org/10.1161/01.CIR.93.5.1043
  • Masroor, S., Bhati, P., Verma, S., Khan, M., & Hussain, M. E. (2018). Heart rate variability following combined aerobic and resistance training in sedentary hypertensive women: A randomised control trial. Indian Heart Journal, 70, 28–35. https://doi.org/10.1016/j.ihj.2018.03.005
  • Melanson, E. L., & Freedson, P. S. (2001). The effect of endurance training on resting heart rate variability in sedentary adult males. European Journal of Applied Physiology, 85(5), 442–449. https://doi.org/10.1007/s004210100479
  • Mendez-Villanueva, A., Edge, J., Suriano, R., Hamer, P., & Bishop, D. (2012). The recovery of repeated-sprint exercise is associated with PCr resynthesis, while muscle pH and EMG amplitude remain depressed. PloS One, 7(12), e51977. https://doi.org/10.1371/journal.pone.0051977
  • Miyamoto, T., Kawada, T., Takaki, H., Inagaki, M., Yanagiya, Y., Jin, Y., Sugimachi, M., & Sunagawa, K. (2003). High plasma norepinephrine attenuates the dynamic heart rate response to vagal stimulation. American Journal of Physiology-Heart and Circulatory Physiology, 284(6), H2412–H2418. https://doi.org/10.1152/ajpheart.00660.2002
  • Morales, J., Álamo, J. M., García-Massó, X., López, J. L., Serra-Añó, P., & González, L.-M. (2014). Use of heart rate variability in monitoring stress and recovery in judo athletes. The Journal of Strength & Conditioning Research, 28(7), 1896–1905. https://doi.org/10.1519/JSC.0000000000000328
  • Myllymäki, T., Rusko, H., Syväoja, H., Juuti, T., Kinnunen, M.-L., & Kyröläinen, H. (2012). Effects of exercise intensity and duration on nocturnal heart rate variability and sleep quality. European Journal of Applied Physiology, 112(3), 801–809. https://doi.org/10.1007/s00421-011-2034-9
  • Nakamura, F. Y., Flatt, A. A., Pereira, L. A., Ramirez-Campillo, R., Loturco, I., & Esco, M. R. (2015). Ultra-short-term heart rate variability is sensitive to training effects in team sports players. Journal of Sports Science & Medicine, 14(3), 602–605
  • O’Leary, D. S. (1993). Autonomic mechanisms of muscle metaboreflex control of heart rate. Journal of Applied Physiology, 74(4), 1748–1754. https://doi.org/10.1152/jappl.1993.74.4.1748
  • Perini, R., Orizio, C., Comandè, A., Castellano, M., Beschi, M., & Veicsteinas, A. (1989). Plasma norepinephrine and heart rate dynamics during recovery from submaximal exercise in man. European Journal of Applied Physiology and Occupational Physiology, 58(8), 879–883. https://doi.org/10.1007/BF02332222
  • Pierpont, G. L., Stolpman, D. R., & Gornick, C. C. (2000). Heart rate recovery post-exercise as an index of parasympathetic activity. Journal of the Autonomic Nervous System, 80(3), 169–174. https://doi.org/10.1016/S0165-1838(00)00090-4
  • Pierpont, G. L., & Voth, E. J. (2004). Assessing autonomic function by analysis of heart rate recovery from exercise in healthy subjects. The American Journal of Cardiology, 94(1), 64–68. https://doi.org/10.1016/j.amjcard.2004.03.032
  • Plews, D. J., Laursen, P. B., Stanley, J., Kilding, A. E., & Buchheit, M. (2013). Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring. Sports Medicine, 43(9), 773–781. https://doi.org/10.1007/s40279-013-0071-8
  • Pober, D. M., Braun, B., & Freedson, P. S. (2004). Effects of a single bout of exercise on resting heart rate variability. Medicine and Science in Sports and Exercise, 36(7), 1140–1148. https://doi.org/10.1249/01.MSS.0000132273.30827.9A
  • Rezk, C. C., Marrache, R. C. B., Tinucci, T., Mion, D., & Forjaz, C. (2006). Post-resistance exercise hypotension, hemodynamics, and heart rate variability: influence of exercise intensity. European Journal of Applied Physiology, 98(1), 105–112. https://doi.org/10.1007/s00421-006-0257-y
  • Saglam, M., Arikan, H., Savci, S., Inal-Ince, D., Bosnak-Guclu, M., Karabulut, E., & Tokgozoglu, L. (2010). International physical activity questionnaire: reliability and validity of the Turkish version. Perceptual and Motor Skills, 111(1), 278–284. https://doi.org/10.2466/06.08.PMS.111.4.278-284
  • Sartor, F., Vernillo, G., De Morree, H. M., Bonomi, A. G., La Torre, A., Kubis, H. P., & Veicsteinas, A. (2013). Estimation of maximal oxygen uptake via submaximal exercise testing in sports, clinical, and home settings. In Sports Medicine 43(9), 865–873. https://doi.org/10.1007/s40279-013-0068-3
  • Schouwenberg, B. J. J. W., Rietjens, S. J., Smits, P., & de Galan, B. E. (2006). Effect of sex on the cardiovascular response to adrenaline in humans. Journal of Cardiovascular Pharmacology, 47(1), 155–157. https://doi.org/10.1097/01.fjc.0000198519.28674.cc
  • Silva-Batista, C., Urso, R. P., Silva, A. E. L., & Bertuzzi, R. (2013). Associations between fitness tests and the International Physical Activity Questionnaire—Short form in healthy men. The Journal of Strength & Conditioning Research, 27(12), 3481–3487. https://doi.org/10.1519/JSC.0b013e31828f1efa
  • Smit, A. A. J., Halliwill, J. R., Low, P. A., & Wieling, W. (1999). Pathophysiological basis of orthostatic hypotension in autonomic failure. The Journal of Physiology, 519(1), 1–10. https://doi.org/10.1111/j.1469-7793.1999.0001o.x
  • Smith, J. C., & Hill, D. W. (1991). Contribution of energy systems during a Wingate power test. British Journal of Sports Medicine, 25(4), 196–199. https://doi.org/10.1136/bjsm.25.4.196
  • Tarvainen, M. P., Niskanen, J.-P., Lipponen, J. A., Ranta-Aho, P. O., & Karjalainen, P. A. (2014). Kubios HRV–heart rate variability analysis software. Computer Methods and Programs in Biomedicine, 113(1), 210–220. https://doi.org/10.1016/j.cmpb.2013.07.024
  • Teixeira, L., Ritti-Dias, R. M., Tinucci, T., Júnior, D. M., & de Moraes Forjaz, C. L. (2011). Post-concurrent exercise hemodynamics and cardiac autonomic modulation. European Journal of Applied Physiology, 111(9), 2069–2078. https://doi.org/10.1007/s00421-010-1811-1
  • Terziotti, P., Schena, F., Gulli, G., & Cevese, A. (2001). Post-exercise recovery of autonomic cardiovascular control: a study by spectrum and cross-spectrum analysis in humans. European Journal of Applied Physiology, 84(3), 187–194. https://doi.org/10.1007/s004210170003
  • Triposkiadis, F., Karayannis, G., Giamouzis, G., Skoularigis, J., Louridas, G., & Butler, J. (2009). The sympathetic nervous system in heart failure: physiology, pathophysiology, and clinical implications. Journal of the American College of Cardiology, 54(19), 1747–1762. https://doi.org/10.1016/j.jacc.2009.05.015
  • Vincent, S., Berthon, P., Zouhal, H., Moussa, E., Catheline, M., Bentue-Ferrer, D., & Gratas-Delamarche, A. (2004). Plasma glucose, insulin and catecholamine responses to a Wingate test in physically active women and men. European Journal of Applied Physiology, 91(1), 15–21. https://doi.org/10.1007/s00421-003-0957-5

Non-Invasive Assessment of Ultra-Short Time Heart Rate Variability During Wingate Test

Year 2022, Volume: 17 Issue: 2, 344 - 356, 31.12.2022
https://doi.org/10.33459/cbubesbd.1131190

Abstract

The aim of present study was to investigate the sedentary healthy men’s ultra-short heart rate variability (HRV) during the Wingate Anaerobic Test (WAnT) (30-sec) and parasympathetic reactivation in the first 60-sec after WAnT. The final sample comprised 101 individuals (Mean±SD; Age=28.9±4.8 years, Height=176.5±5.5 cm, Weight=89.8±8.8 kg). Anaerobic powers were measured by WAnT. Heart rate variability (HRV) was then recorded as 60-sec before the test for 30-sec and 60-sec after the test. HRV was measured by Polar V800 GPS Sports Watch with Heart Rate Monitor and Polar H7 band. To compare the testing stages HRV parameters, repeated one-way analysis of variance (ANOVA) was used. Binary comparisons were determined with the Bonferroni test. The relationship between exercise data of heart rate variability and power average watt was assessed by the Pearson correlation test. The Effect Size Cohen's d was calculated. The main finding of this study is that pre-test (60-sec) HRV values continue to drop dramatically during test (30-sec) and post-test (60-sec) measurements (p<0.05). Also, no correlation was observed between performance and HRV data during testing (r=-0.08, p>0.05). In conclusion, the present study was not observed to sign of HRV recovery during 60-sec after the 30-sec WAnT. HRV recorded in the first 60 seconds after maximum anaerobic exercise program in sedentary healthy men may be considered to exhibit an imbalance in the parasympathetic activity of the autonomic nervous system.

References

  • ACSM. (2013). ACSM’s Guidelines for Exercise Testing and Prescription. Lippincott Williams & Wilkins.
  • Ansell, S. K. D., Jester, M., Tryggestad, J. B., & Short, K. R. (2020). A pilot study of the effects of a high‐intensity aerobic exercise session on heart rate variability and arterial compliance in adolescents with or without type 1 diabetes. Pediatric Diabetes, 21(3), 486–495. https://doi.org/doi.org/10.1111/PEDI.12983
  • Bar-Or, O. (1987). The Wingate anaerobic test an update on methodology, reliability and validity. Sports Medicine, 4(6), 381–394. https://doi.org/10.2165/00007256-198704060-00001
  • Barak, O. F., Jakovljevic, D. G., Gacesa, J. Z. P., Ovcin, Z. B., Brodie, D. A., & Grujic, N. G. (2010). Heart rate variability before and after cycle exercise in relation to different body positions. Journal of Sports Science & Medicine, 9(2), 176–182
  • Barak, O. F., Klasnja, A., POPADIC GACESA, J., & GRUJIC, N. G. (2014). Gender differences in parasympathetic reactivation during recovery from Wingate anaerobic test. Periodicum Biologorum, 116(1), 53–58
  • Barantke, M., Krauss, T., Ortak, J., Lieb, W., Reppel, M., Burgdorf, C., Pramstaller, P. P., Schunkert, H., & Bonnemeier, H. (2008). Effects of gender and aging on differential autonomic responses to orthostatic maneuvers. Journal of Cardiovascular Electrophysiology, 19(12), 1296–1303. https://doi.org/10.1111/j.1540-8167.2008.01257.x
  • Batterham, A. M., & Hopkins, W. G. (2006). Making meaningful inferences about magnitudes. International Journal of Sports Physiology and Performance, 1(1), 50–57. https://doi.org/10.1123/ijspp.1.1.50
  • Bosquet, L., Papelier, Y., Leger, L., & Legros, P. (2003). Night heart rate variability during overtraining in male endurance athletes. Journal of Sports Medicine and Physical Fitness, 43(4), 506–512
  • Buchheit, M., Laursen, P. B., & Ahmaidi, S. (2007). Parasympathetic reactivation after repeated sprint exercise. American Journal of Physiology-Heart and Circulatory Physiology, 293(1), H133–H141. https://doi.org/10.1152/ajpheart.00062.2007
  • Chalencon, S., Busso, T., Lacour, J.-R., Garet, M., Pichot, V., Connes, P., Gabel, C. P., Roche, F., & Barthélémy, J. C. (2012). A model for the training effects in swimming demonstrates a strong relationship between parasympathetic activity, performance and index of fatigue. PloS One, 7(12), e52636. https://doi.org/10.1371/journal.pone.0052636
  • Chen, J.-Y., Lee, Y. L., Tsai, W.-C., Lee, C.-H., Chen, P.-S., Li, Y.-H., Tsai, L.-M., Chen, J.-H., & Lin, L.-J. (2011). Cardiac autonomic functions derived from short-term heart rate variability recordings associated with heart rate recovery after treadmill exercise test in young individuals. Heart and Vessels, 26(3), 282–288. https://doi.org/10.1536/ihj.51.105
  • Coote, J. H. (2010). Recovery of heart rate following intense dynamic exercise. Experimental Physiology, 95(3), 431–440. https://doi.org/10.1113/expphysiol.2009.047548
  • De Oliveira, T. P., de Alvarenga Mattos, R., da Silva, R. B. F., Rezende, R. A., & de Lima, J. R. P. (2013). Absence of parasympathetic reactivation after maximal exercise. Clinical Physiology and Functional Imaging, 33(2), 143–149. https://doi.org/10.1111/cpf.12009
  • Dong, J. (2016). The role of heart rate variability in sports physiology. Experimental and Therapeutic Medicine, 11(5), 1531–1536. https://doi.org/10.3892/etm.2016.3104
  • Dorey, T. W., O’Brien, M. W., & Kimmerly, D. S. (2019). The influence of aerobic fitness on electrocardiographic and heart rate variability parameters in young and older adults. Autonomic Neuroscience, 217(60-70). https://doi.org/10.1016/j.autneu.2019.01.004
  • Driller, M. W., Argus, C. K., & Shing, C. M. (2013). The reliability of a 30-s sprint test on the Wattbike cycle ergometer. International Journal of Sports Physiology and Performance, 8(4), 379–383. https://doi.org/10.1123/ijspp.8.4.379
  • Edmonds, R. C., Sinclair, W. H., & Leicht, A. S. (2013). Effect of a training week on heart rate variability in elite youth rugby league players. International Journal of Sports Medicine, 34(12), 1087–1092. https://doi.org/10.1055/s-0033-1333720
  • ESC, T. F. O. F., & Naspe, T. (1996). Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur. Heart J, 17, 354–381
  • Esco, M R, & Flatt, A. A. (2014). Ultra-short-term heart rate variability indexes at rest and post-exercise in athletes: evaluating the agreement with accepted recommendations. Journal of Sports Science & Medicine, 13(3), 535–541
  • Esco, Michael R, Williford, H. N., Flatt, A. A., Freeborn, T. J., & Nakamura, F. Y. (2018). Ultra-shortened time-domain HRV parameters at rest and following exercise in athletes: an alternative to frequency computation of sympathovagal balance. European Journal of Applied Physiology, 118(1), 175–184. https://doi.org/10.1007/s00421-017-3759-x
  • Flatt, A. A., & Esco, M. R. (2013). Validity of the ithleteTM smart phone application for determining ultra-short-term heart rate variability. Journal of Human Kinetics, 39(1), 85–92. https://doi.org/10.2478/hukin-2013-0071
  • Giles, D., Draper, N., & Neil, W. (2016). Validity of the Polar V800 heart rate monitor to measure RR intervals at rest. European Journal of Applied Physiology, 116(3), 563–571. https://doi.org/10.1007/s00421-015-3303-9
  • Gladwell, V. F., Sandercock, G. R. H., & Birch, S. L. (2010). Cardiac vagal activity following three intensities of exercise in humans. Clinical Physiology and Functional Imaging, 30(1), 17–22. https://doi.org/10.1111/j.1475-097X.2009.00899.x
  • Goldberger, J. J., Le, F. K., Lahiri, M., Kannankeril, P. J., Ng, J., & Kadish, A. H. (2006). Assessment of parasympathetic reactivation after exercise. American Journal of Physiology-Heart and Circulatory Physiology, 290(6), 2446–2452. https://doi.org/10.1152/ajpheart.01118.2005
  • Hnidawei, M. A., MjallI, M., & Zayed, Z. (2010). The upper limit of physiological cardiac hypertrophy in elite male athletes. American Journal of Applied Sciences, 7(10), 592–597. https://doi.org/10.1007/s00421-004-1052-2
  • Hottenrott, K., Hoos, O., & Esperer, H. D. (2006). Heart rate variability and physical exercise. Current status. Herz, 31(6), 544–552. https://doi.org/10.1007/s00059-006-2855-1
  • Javorka, M., Zila, I., Balharek, T., & Javorka, K. (2002). Heart rate recovery after exercise: relations to heart rate variability and complexity. Brazilian Journal of Medical and Biological Research, 35, 991–1000. https://doi.org/10.1590/s0100-879x2002000800018
  • Jia, Z., Bonde, A., Li, S., Xu, C., Wang, J., Zhang, Y., Howard, R. E., & Zhang, P. (2017). Monitoring a person’s heart rate and respiratory rate on a shared bed using geophones. Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems, 1–14. https://doi.org/10.1145/3131672.3131679
  • Kannankeril, P. J., & Goldberger, J. J. (2002). Parasympathetic effects on cardiac electrophysiology during exercise and recovery. American Journal of Physiology-Heart and Circulatory Physiology, 282(6), 2091–2098. https://doi.org/10.1152/ajpheart.00825.2001
  • Kiviniemi, A. M., Hautala, A. J., Mäkikallio, T. H., Seppänen, T., Huikuri, H. V, & Tulppo, M. P. (2006). Cardiac vagal outflow after aerobic training by analysis of high-frequency oscillation of the R–R interval. European Journal of Applied Physiology, 96(6), 686–692. https://doi.org/10.1007/s00421-005-0130-4
  • Makivić, B., Nikić Djordjević, M., & Willis, M. S. (2013). Heart Rate Variability (HRV) as a Tool for Diagnostic and Monitoring Performance in Sport and Physical Activities. Journal of Exercise Physiology Online, 16(3), 103–131
  • Mamatha, S. D., Rajalakshmi, R., Rajesh Kumar, T., & Smitha, M. C. (2019). Effect of aerobic exercise and yoga on heart rate variability (HRV) parameters in young adults. International Journal of Physiology, 7(1), 19–22. https://doi.org/10.3389/fphys.2021.657274
  • Marek J. Thomas Bigger A., John Camm, Robert E., Kleiger Alberto Malliani Arthur J., Moss Peter, J. Schwartz, M., & Cardiology, T. F. of the E. S. of. (1996). Heart rate variability, standards of measurement, physiological interpretation, and clinical use. Circulation, 93(5), 1043–1065. https://doi.org/10.1161/01.CIR.93.5.1043
  • Masroor, S., Bhati, P., Verma, S., Khan, M., & Hussain, M. E. (2018). Heart rate variability following combined aerobic and resistance training in sedentary hypertensive women: A randomised control trial. Indian Heart Journal, 70, 28–35. https://doi.org/10.1016/j.ihj.2018.03.005
  • Melanson, E. L., & Freedson, P. S. (2001). The effect of endurance training on resting heart rate variability in sedentary adult males. European Journal of Applied Physiology, 85(5), 442–449. https://doi.org/10.1007/s004210100479
  • Mendez-Villanueva, A., Edge, J., Suriano, R., Hamer, P., & Bishop, D. (2012). The recovery of repeated-sprint exercise is associated with PCr resynthesis, while muscle pH and EMG amplitude remain depressed. PloS One, 7(12), e51977. https://doi.org/10.1371/journal.pone.0051977
  • Miyamoto, T., Kawada, T., Takaki, H., Inagaki, M., Yanagiya, Y., Jin, Y., Sugimachi, M., & Sunagawa, K. (2003). High plasma norepinephrine attenuates the dynamic heart rate response to vagal stimulation. American Journal of Physiology-Heart and Circulatory Physiology, 284(6), H2412–H2418. https://doi.org/10.1152/ajpheart.00660.2002
  • Morales, J., Álamo, J. M., García-Massó, X., López, J. L., Serra-Añó, P., & González, L.-M. (2014). Use of heart rate variability in monitoring stress and recovery in judo athletes. The Journal of Strength & Conditioning Research, 28(7), 1896–1905. https://doi.org/10.1519/JSC.0000000000000328
  • Myllymäki, T., Rusko, H., Syväoja, H., Juuti, T., Kinnunen, M.-L., & Kyröläinen, H. (2012). Effects of exercise intensity and duration on nocturnal heart rate variability and sleep quality. European Journal of Applied Physiology, 112(3), 801–809. https://doi.org/10.1007/s00421-011-2034-9
  • Nakamura, F. Y., Flatt, A. A., Pereira, L. A., Ramirez-Campillo, R., Loturco, I., & Esco, M. R. (2015). Ultra-short-term heart rate variability is sensitive to training effects in team sports players. Journal of Sports Science & Medicine, 14(3), 602–605
  • O’Leary, D. S. (1993). Autonomic mechanisms of muscle metaboreflex control of heart rate. Journal of Applied Physiology, 74(4), 1748–1754. https://doi.org/10.1152/jappl.1993.74.4.1748
  • Perini, R., Orizio, C., Comandè, A., Castellano, M., Beschi, M., & Veicsteinas, A. (1989). Plasma norepinephrine and heart rate dynamics during recovery from submaximal exercise in man. European Journal of Applied Physiology and Occupational Physiology, 58(8), 879–883. https://doi.org/10.1007/BF02332222
  • Pierpont, G. L., Stolpman, D. R., & Gornick, C. C. (2000). Heart rate recovery post-exercise as an index of parasympathetic activity. Journal of the Autonomic Nervous System, 80(3), 169–174. https://doi.org/10.1016/S0165-1838(00)00090-4
  • Pierpont, G. L., & Voth, E. J. (2004). Assessing autonomic function by analysis of heart rate recovery from exercise in healthy subjects. The American Journal of Cardiology, 94(1), 64–68. https://doi.org/10.1016/j.amjcard.2004.03.032
  • Plews, D. J., Laursen, P. B., Stanley, J., Kilding, A. E., & Buchheit, M. (2013). Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring. Sports Medicine, 43(9), 773–781. https://doi.org/10.1007/s40279-013-0071-8
  • Pober, D. M., Braun, B., & Freedson, P. S. (2004). Effects of a single bout of exercise on resting heart rate variability. Medicine and Science in Sports and Exercise, 36(7), 1140–1148. https://doi.org/10.1249/01.MSS.0000132273.30827.9A
  • Rezk, C. C., Marrache, R. C. B., Tinucci, T., Mion, D., & Forjaz, C. (2006). Post-resistance exercise hypotension, hemodynamics, and heart rate variability: influence of exercise intensity. European Journal of Applied Physiology, 98(1), 105–112. https://doi.org/10.1007/s00421-006-0257-y
  • Saglam, M., Arikan, H., Savci, S., Inal-Ince, D., Bosnak-Guclu, M., Karabulut, E., & Tokgozoglu, L. (2010). International physical activity questionnaire: reliability and validity of the Turkish version. Perceptual and Motor Skills, 111(1), 278–284. https://doi.org/10.2466/06.08.PMS.111.4.278-284
  • Sartor, F., Vernillo, G., De Morree, H. M., Bonomi, A. G., La Torre, A., Kubis, H. P., & Veicsteinas, A. (2013). Estimation of maximal oxygen uptake via submaximal exercise testing in sports, clinical, and home settings. In Sports Medicine 43(9), 865–873. https://doi.org/10.1007/s40279-013-0068-3
  • Schouwenberg, B. J. J. W., Rietjens, S. J., Smits, P., & de Galan, B. E. (2006). Effect of sex on the cardiovascular response to adrenaline in humans. Journal of Cardiovascular Pharmacology, 47(1), 155–157. https://doi.org/10.1097/01.fjc.0000198519.28674.cc
  • Silva-Batista, C., Urso, R. P., Silva, A. E. L., & Bertuzzi, R. (2013). Associations between fitness tests and the International Physical Activity Questionnaire—Short form in healthy men. The Journal of Strength & Conditioning Research, 27(12), 3481–3487. https://doi.org/10.1519/JSC.0b013e31828f1efa
  • Smit, A. A. J., Halliwill, J. R., Low, P. A., & Wieling, W. (1999). Pathophysiological basis of orthostatic hypotension in autonomic failure. The Journal of Physiology, 519(1), 1–10. https://doi.org/10.1111/j.1469-7793.1999.0001o.x
  • Smith, J. C., & Hill, D. W. (1991). Contribution of energy systems during a Wingate power test. British Journal of Sports Medicine, 25(4), 196–199. https://doi.org/10.1136/bjsm.25.4.196
  • Tarvainen, M. P., Niskanen, J.-P., Lipponen, J. A., Ranta-Aho, P. O., & Karjalainen, P. A. (2014). Kubios HRV–heart rate variability analysis software. Computer Methods and Programs in Biomedicine, 113(1), 210–220. https://doi.org/10.1016/j.cmpb.2013.07.024
  • Teixeira, L., Ritti-Dias, R. M., Tinucci, T., Júnior, D. M., & de Moraes Forjaz, C. L. (2011). Post-concurrent exercise hemodynamics and cardiac autonomic modulation. European Journal of Applied Physiology, 111(9), 2069–2078. https://doi.org/10.1007/s00421-010-1811-1
  • Terziotti, P., Schena, F., Gulli, G., & Cevese, A. (2001). Post-exercise recovery of autonomic cardiovascular control: a study by spectrum and cross-spectrum analysis in humans. European Journal of Applied Physiology, 84(3), 187–194. https://doi.org/10.1007/s004210170003
  • Triposkiadis, F., Karayannis, G., Giamouzis, G., Skoularigis, J., Louridas, G., & Butler, J. (2009). The sympathetic nervous system in heart failure: physiology, pathophysiology, and clinical implications. Journal of the American College of Cardiology, 54(19), 1747–1762. https://doi.org/10.1016/j.jacc.2009.05.015
  • Vincent, S., Berthon, P., Zouhal, H., Moussa, E., Catheline, M., Bentue-Ferrer, D., & Gratas-Delamarche, A. (2004). Plasma glucose, insulin and catecholamine responses to a Wingate test in physically active women and men. European Journal of Applied Physiology, 91(1), 15–21. https://doi.org/10.1007/s00421-003-0957-5
There are 58 citations in total.

Details

Primary Language English
Subjects Sports Medicine
Journal Section Research Article
Authors

Tuncay Alparslan 0000-0003-2164-0085

Ramiz Arabacı 0000-0001-8403-5742

Ali Kamil Güngör 0000-0001-5875-0742

Early Pub Date December 11, 2022
Publication Date December 31, 2022
Submission Date June 15, 2022
Acceptance Date November 19, 2022
Published in Issue Year 2022 Volume: 17 Issue: 2

Cite

APA Alparslan, T., Arabacı, R., & Güngör, A. K. (2022). Non-Invasive Assessment of Ultra-Short Time Heart Rate Variability During Wingate Test. CBÜ Beden Eğitimi Ve Spor Bilimleri Dergisi, 17(2), 344-356. https://doi.org/10.33459/cbubesbd.1131190
AMA Alparslan T, Arabacı R, Güngör AK. Non-Invasive Assessment of Ultra-Short Time Heart Rate Variability During Wingate Test. CBÜ BESBD. December 2022;17(2):344-356. doi:10.33459/cbubesbd.1131190
Chicago Alparslan, Tuncay, Ramiz Arabacı, and Ali Kamil Güngör. “Non-Invasive Assessment of Ultra-Short Time Heart Rate Variability During Wingate Test”. CBÜ Beden Eğitimi Ve Spor Bilimleri Dergisi 17, no. 2 (December 2022): 344-56. https://doi.org/10.33459/cbubesbd.1131190.
EndNote Alparslan T, Arabacı R, Güngör AK (December 1, 2022) Non-Invasive Assessment of Ultra-Short Time Heart Rate Variability During Wingate Test. CBÜ Beden Eğitimi ve Spor Bilimleri Dergisi 17 2 344–356.
IEEE T. Alparslan, R. Arabacı, and A. K. Güngör, “Non-Invasive Assessment of Ultra-Short Time Heart Rate Variability During Wingate Test”, CBÜ BESBD, vol. 17, no. 2, pp. 344–356, 2022, doi: 10.33459/cbubesbd.1131190.
ISNAD Alparslan, Tuncay et al. “Non-Invasive Assessment of Ultra-Short Time Heart Rate Variability During Wingate Test”. CBÜ Beden Eğitimi ve Spor Bilimleri Dergisi 17/2 (December 2022), 344-356. https://doi.org/10.33459/cbubesbd.1131190.
JAMA Alparslan T, Arabacı R, Güngör AK. Non-Invasive Assessment of Ultra-Short Time Heart Rate Variability During Wingate Test. CBÜ BESBD. 2022;17:344–356.
MLA Alparslan, Tuncay et al. “Non-Invasive Assessment of Ultra-Short Time Heart Rate Variability During Wingate Test”. CBÜ Beden Eğitimi Ve Spor Bilimleri Dergisi, vol. 17, no. 2, 2022, pp. 344-56, doi:10.33459/cbubesbd.1131190.
Vancouver Alparslan T, Arabacı R, Güngör AK. Non-Invasive Assessment of Ultra-Short Time Heart Rate Variability During Wingate Test. CBÜ BESBD. 2022;17(2):344-56.