Research Article
BibTex RIS Cite

An Examination of Heart Rate Variability at Anaerobic Threshold and Respiratory Compensation Points During Cardiopulmonary Exercise Test

Year 2023, Volume: 18 Issue: 1, 193 - 203, 30.06.2023
https://doi.org/10.33459/cbubesbd.1253528

Abstract

The aim of this study is to examine the changes in HRV values before, during (at AT and RC) and after maximal incremental cardiopulmonary exercise test. The sample comprised 121 healthy men who recreational do exercise 2-3 days a week. (age: 30.5 ± 4.6 years, height: 177.8 ± 6.1 cm; weight: 80.2 ± 10.2 kg). Anthropometric measurements were measured by using body analyzer, and aerobic capacities of participants were measured by using the cardiopulmonary exercise test via the Bruce protocol. According to this, heart rate variability recordings were taken at seven stages during the cardiopulmonary exercise test: before the test (1), at the beginning of the test (2), between the beginning of the test and the anaerobic threshold (3), at the anaerobic threshold (4), between the anaerobic threshold and the respiratory threshold (5), at the respiratory threshold (6), and finally (7), 30 seconds after the cardiopulmonary exercise test. Repeated measures analysis of variance (ANOVA) was used to compare the HRV values obtained from the test stages. In conclusion, using a gas analyzer during cardiovascular exercise testing, HRV values (MeanRR, SDNN, RMSSD, LFnu) determined at seven stages continue to decrease from the beginning. A rest period of 30 seconds (passive rest) immediately after completing the exercise does not seem to be sufficient for recovery. According to the results of this study, it can be considered that the sympathetic nervous system activity (LFnu) exhibits a more pronounced appearance at threshold zones.

References

  • Alparslan, T., Arabaci, R., and Gorgulu, R. (2021). Non-invasive assessment of short and ultra-short heart rate variability during different physical and physiological tests. Kinesiology, 53(1), 122-130. https://doi.org/10.26582/k.53.1.15
  • Altini, M., Van Hoof, C., and Amft, O. (2017). Relation between estimated cardiorespiratory fitness and running performance in free-living: An Analysis of HRV4Training data. Biomedical and Health Informatics (BHI), 2017 IEEE EMBS International Conference On, 249–252
  • Arabaci, R., Pehlivan, E., and Gorgulu, R. (2020). Acute effect of different trainings in the variability of the heart rate of young football players. Educación Física y Deporte, 39(2). https://doi.org/10.17533/udea.efyd.v39n2a02
  • Augustsson, S. R., Bersås, E., Thomas, E. M., Sahlberg, M., Augustsson, J., and Svantesson, U. (2009). Gender differences and reliability of selected physical performance tests in young women and men. Advances in Physiotherapy, 11(2), 64–70. https://doi.org/10.1080/14038190801999679
  • Baek, H. J., Cho, C.-H., Cho, J., and Woo, J-M. (2015). Reliability of ultra-short-term analysis as a surrogate of standard 5-min analysis of heart rate variability. Telemedicine and E-Health, 21(5), 404–414. https://doi.org/10.1089/tmj.2014.0104
  • Camm, A.J., Malik M., Bigger J.T. Jr, Breithardt G., Cerutti S., Cohen R.J., Coumel P., Fallen E.L., Kennedy H.L., Kleiger R.E., Lombardi F., Malliani A., Moss A.J., Rottman J.N., Schmidt G., Schwartz P.J., Singer D.H. (1996) Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. European Heart Journal, 17, 354–381. Retrieved from: https://pubmed.ncbi.nlm.nih.gov/8598068/
  • Cassirame, J., Tordi, N., Fabre, N., Duc, S., Durand, F., and Mourot, L. (2015). Heart rate variability to assess ventilatory threshold in ski-mountaineering. European Journal of Sport Science, 15(7), 615–622. https://doi.org/10.1080/17461391.2014.957729
  • Cheuvront, S. N., Carter, R., Deruisseau, K. C., and Moffatt, R. J. (2005). Running performance differences between men and women: An update. Sports Medicine 35(12), 1017–1024. https://doi.org/10.2165/00007256-200535120-00002
  • Chwalbinska-Moneta, J., Robergs, R. A., Costill, D. L., and Fink, W. J. (1989). Threshold for muscle lactate accumulation during progressive exercise. Journal of Applied Physiology, 66(6), 2710–2716. https://doi.org/10.1152/jappl.1989.66.6.2710
  • Cottin, F., Leprêtre, P.-M., Lopes, P., Papelier, Y., Médigue, C., and Billat, V. (2006). Assessment of ventilatory thresholds from heart rate variability in well-trained subjects during cycling. International Journal of Sports Medicine, 27(12), 959–967. https://doi.org/10.1055/s-2006-923849
  • Cottin, F., Médigue, C., Lopes, P., Leprêtre, P.-M., Heubert, R., and Billat, V. (2007). Ventilatory thresholds assessment from heart rate variability during an incremental exhaustive running test. International Journal of Sports Medicine, 28(4), 287–294. https://doi.org/10.1055/s-2006-924355
  • Dourado, V. Z., Banov, M. C., Marino, M. C., De Souza, V. L., Antunes, L. C. D. O., and McBurnie, M. A. (2010). A Simple approach to assess VT during a field walk test. International Journal of Sports Medicine, 31(10), 698–703. https://doi.org/10.1055/s-0030-1255110
  • Ekkekakis, P., Thome, J., Petruzzello, S. J., and Hall, E. E. (2008). The Preference for and Tolerance of the Intensity of Exercise Questionnaire: A Psychometric evaluation among college women. Journal of Sports Sciences, 26(5), 499–510. https://doi.org/10.1080/02640410701624523
  • Esco, M. R., and Flatt, A. A. (2014). Ultra-short-term heart rate variability indexes at rest and post-exercise in athletes: Evaluating the agreement with accepted recommendations. Journal of Sports Science and Medicine, 13(3), 535–541. Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126289/
  • Esco, M. R., Flatt, A. A., and Nakamura, F. Y. (2016). Initial weekly HRV response is related to the prospective change in VO2max in female soccer players. International Journal of Sports Medicine, 37(6), 436–441. https://doi.org/10.1055/s-0035-1569342
  • Fortes, L. S., da Costa, B. D. V, Paes, P. P., do Nascimento Júnior, J. R. A., Fiorese, L., and Ferreira, M. E. C. (2017). Influence of competitive-anxiety on heart rate variability in swimmers. Journal of Sports Science and Medicine, 16(4), 498-504. Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5721179/
  • Giles, D. A., and Draper, N. (2018). Heart rate variability during exercise: A Comparison of artefact correction methods. The Journal of Strength and Conditioning Research, 32(3), 726–735. https://doi.org/10.1519/JSC.0000000000001800.
  • Guilkey, J. P., Overstreet, M., and Mahon, A. D. (2015). Heart rate recovery and parasympathetic modulation in boys and girls following maximal and submaximal exercise. European Journal of Applied Physiology, 115(10), 2125–2133. https://doi.org/10.1007/s00421-015-3192-y
  • Hautala, A. J., Mäkikallio, T. H., Seppänen, T., Huikuri, H. V, and Tulppo, M. P. (2003). Short‐term correlation properties of R–R interval dynamics at different exercise intensity levels. Clinical Physiology and Functional Imaging, 23(4), 215–223. https://doi.org/10.1046/j.1475-097x.2003.00499.x.
  • Jamnick, N. A., Botella, J., Pyne, D. B., and Bishop, D. J. (2018). Manipulating graded exercise test variables affects the validity of the lactate threshold and _ VO 2peak. PLoS ONE, 13(7), 1–21. https://doi.org/10.1371/journal.pone.0199794
  • Karapetian, G. K., Engels, H. J., and Gretebeck, R. J. (2008). Use of heart rate variability to estimate LT and VT. International Journal of Sports Medicine, 29(08), 652–657. https://doi.org/10.1055/s-2007-989423
  • Lewis, M. J., Kingsley, M., Short, A. L., and Simpson, K. (2007). Rate of reduction of heart rate variability during exercise as an index of physical work capacity. Scandinavian Journal of Medicine and Science in Sports, 17(6), 696–702. https://doi.org/10.1111/j.1600-0838.2006.00616.x
  • Marek J. Thomas Bigger A., John Camm, Robert E., Kleiger Alberto Malliani Arthur J., Moss Peter, J. Schwartz, M., and Cardiology, T. F. of the E. S. of. (1996). Heart rate variability, standards of measurement, physiological interpretation, and clinical use. Circulation, 93(5), 1043–1065. https://doi.org/10.1161/01.CIR.93.5.1043
  • McCraty, R., and Shaffer, F. (2015). Heart rate variability: New perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Global Advances In Health and Medicine, 4(1), 46–61. https://doi.org/10.7453/gahmj.2014.073
  • Morales, J., Álamo, J. M., García-Massó, X., López, J. L., Serra-Añó, P., and González, L.-M. (2014). Use of heart rate variability in monitoring stress and recovery in judo athletes. The Journal of Strength and Conditioning Research, 28(7), 1896–1905. https://doi.org/10.1519/JSC.0000000000000328
  • Nakamura, F. Y., Flatt, A. A., Pereira, L. A., Ramirez-Campillo, R., Loturco, I., and Esco, M. R. (2015). Ultra-short-term heart rate variability is sensitive to training effects in team sports players. Journal of Sports Science and Medicine, 14(3), 602–605. Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541125/
  • Neufeld, E. V, Wadowski, J., Boland, D. M., Dolezal, B. A., and Cooper, C. B. (2019). Heart Rate Acquisition and Threshold-Based Training Increases Oxygen Uptake at Metabolic Threshold in Triathletes: A Pilot Study. International Journal of Exercise Science, 12(2), 144–154. Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6355121/
  • Poehling, C. P. (2019). The Effects of Submaximal and Maximal Exercise on Heart Rate Variability. International Journal of Exercise Science, 12(2), 9–14. Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6355137/
  • Poole, D. C., and Jones, A. M. (2017). Measurement of the maximum oxygen uptake VO2max: VO2peak is no longer acceptable. Journal of Applied Physiology, 122(4), 997–1002. https://doi.org/10.1152/japplphysiol.01063.2016
  • Perini, R., Orizio, C., Baselli, G., Cerutti, S., and Veicsteinas, A. (1990). The influence of exercise intensity on the power spectrum of heart rate variability. European Journal of Applied Physiology and Occupational Physiology. 61, 143–148. https://doi.org/10.1007/bf00236709
  • Pichon, A. P., De Bisschop, C., Roulaud, M., Denjean, A., and Papelier, Y. (2004). Spectral analysis of heart rate variability during exercise in trained subjects. Medicine & Science in Sports & Exercise. 36, 1702–1708. https://doi.org/10.1249/01.mss.0000142403.93205.35
  • Povea, C., Schmitt, L., Brugniaux, J., Nicolet, G., Richalet, J.-P., and Fouillot, J.-P. (2005). Effects of intermittent hypoxia on heart rate variability during rest and exercise. High Altitude Medicine & Biology. 6, 215–225. https://doi.org/10.1089/ham.2005.6.215
  • Ramos-Campo, D. J., Rubio-Arias, J. A., Ávila-Gandía, V., Marín-Pagán, C., Luque, A., and Alcaraz, P. E. (2017). Heart rate variability to assess ventilatory thresholds in professional basketball players. Journal of Sport and Health Science, 6(4), 468–473. https://doi.org/10.1016/j.jshs.2016.01.002
  • Radaelli, A., Valle, F., Falcone, C., Calciati, A., Leuzzi, S., Martinelli, L., et al. (1996). Determinants of heart rate variability in heart transplanted subjects during physical exercise. European Heart Journal 17, 462–471. https://doi.org/10.1093/oxfordjournals.eurheartj.a014881
  • Sanz-Quinto, S., Brizuela, G., López-Grueso, R., Flatt, A. A., Aracil-Marco, A., Reina, R., and Moya-Ramón, M. (2018). Monitoring Heart Rate Variability Before and After a Marathon in an Elite Wheelchair Athlete: A Case Study. Journal of Sports Science and Medicine, 17(4), 557-562. Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6243632/pdf/jssm-17-557.pdf
  • Sarmiento, S., García-Manso, J. M., Martín-González, J. M., Vaamonde, D., Calderón, J., and Da Silva-Grigoletto, M. E. (2013). Heart rate variability during high-intensity exercise. Journal of Systems Science and Complexity, 26(1), 104–116. https://doi.org/10.1007/s11424-013-2287-y
  • Shaffer, F., and Ginsberg, J. P. (2017). An Overview of heart rate variability metrics and norms. Frontiers in Public Health, 5, 258. https://doi.org/10.3389/fpubh.2017.00258
  • Simões, R. P., Mendes, R. G., Castello-Simões, V., Catai, A. M., Arena, R., and Borghi-Silva, A. (2016). Use of heart rate variability to estimate lactate threshold in coronary artery disease patients during resistance exercise. Journal of Sports Science and Medicine, 15(4), 649-657. Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131219/
  • Tarvainen, M. P., Niskanen, J.-P., Lipponen, J. A., Ranta-Aho, P. O., and Karjalainen, P. A. (2014). Kubios HRV–heart rate variability analysis software. Computer Methods and Programs in Biomedicine, 113(1), 210–220. https://doi.org/10.1016/j.cmpb.2013.07.024
  • Tulppo, M. P., Makikallio, T., Takala, T., Seppanen, T., and Huikuri, H. V. (1996). Quantitative beat-to-beat analysis of heart rate dynamics during exercise. American Journal of Physiology-Heart and Circulatory Physiology. 271(1), 244–252. https://doi.org/10.1152/ajpheart.1996.271.1.H244
  • Tulppo, M. P., Makikallio, T. H., Seppänen, T., Laukkanen, R. T., and Huikuri, H. V. (1998). Vagal modulation of heart rate during exercise: effects of age and physical fitness. American Journal of Physiology-Heart and Circulatory Physiology, 274(2), 424–429. https://doi.org/10.1152/ajpheart.1998.274.2.H424
  • Williams, S., West, S., Howells, D., Kemp, S. P. T., Flatt, A. A., and Stokes, K. (2018). Modelling the HRV response to training loads in elite rugby seven players. Journal of Sports Science and Medicine, 17(3), 402-408. Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6090397/
  • Xhyheri, B., Manfrini, O., Mazzolini, M., Pizzi, C., and Bugiardini, R. (2012). Heart rate variability today. Progress in Cardiovascular Diseases, 55(3), 321–331. https://doi.org/10.1016/j.pcad.2012.09.001
  • Yamamoto, Y., Hughson, R. L., and Peterson, J. C. (1991). Autonomic control of heart rate during exercise studied by heart rate variability spectral analysis. Journal of Applied Physiology, 71(3), 1136–1142. https://doi.org/10.1152/jappl.1991.71.3.1136

Kardiyopulmoner Egzersiz Testi̇ Sırasında Anaerobik Eşik ve Solunum Kompenzasyonunun Kalp Atım Hızı Değişkenliği̇ Açısından İncelenmesi̇

Year 2023, Volume: 18 Issue: 1, 193 - 203, 30.06.2023
https://doi.org/10.33459/cbubesbd.1253528

Abstract

Bu çalışmanın amacı, maksimal artan kardiyo-pulmoner egzersiz testi öncesi, sırasında (AT ve RC'de) ve sonrasında HRV değerlerindeki değişiklikleri incelemektir. Örneklem, haftada 2-3 gün rekreaktif olarak egzersiz yapan 121 sağlıklı erkekten oluştu (Yaş 30,5 ± 4,6 yıl; Boy 177,8 ± 6,1 cm; Ağırlık 80,2 ± 10,2 kg). Antropometrik ölçümler vücut analiz cihazı kullanılarak, aerobik kapasiteleri Bruce protokolü kullanılarak kardiyo-pulmoner egzersiz testi ile ölçüldü. Buna göre kardiyo-pulmoner egzersiz testi öncesinde (1), test başlangıcında (2), test başlangıcı ile anaerobik eşik arasında (3), anaerobik eşikte (4), anaerobik eşik ile solunum eşiği arasında (5), solunum eşiğinde (6) ve son olarak kardiyo-pulmoner egzersiz testi sonrasında (7) 30’ar saniye olmak üzere yedi aşamada kalp hızı değişkenliği kayıtları alındı. Test aşamalarından elde edilen HRV değerlerini karşılaştırmak için tekrarlı ölçümler varyans analizi (ANOVA) kullanıldı. Sonuç olarak, kardiyovasküler egzersiz testi sırasında gaz analizörü kullanılarak yedi aşamada belirlenen HRV değerleri (MeanRR, SDNN, RMSSD, LFnu) başlangıçtan itibaren azalmaya devam etmektedir. Egzersizi tamamladıktan hemen sonra 30 saniyelik bir dinlenme süresi (pasif dinlenme) toparlanma için yeterli görünmemektedir. Bu çalışmanın sonuçlarına göre sempatik sinir sistemi aktivitesinin (LFnu) eşik bölgelerinde daha belirgin bir görünüm sergilediği düşünülebilir.

References

  • Alparslan, T., Arabaci, R., and Gorgulu, R. (2021). Non-invasive assessment of short and ultra-short heart rate variability during different physical and physiological tests. Kinesiology, 53(1), 122-130. https://doi.org/10.26582/k.53.1.15
  • Altini, M., Van Hoof, C., and Amft, O. (2017). Relation between estimated cardiorespiratory fitness and running performance in free-living: An Analysis of HRV4Training data. Biomedical and Health Informatics (BHI), 2017 IEEE EMBS International Conference On, 249–252
  • Arabaci, R., Pehlivan, E., and Gorgulu, R. (2020). Acute effect of different trainings in the variability of the heart rate of young football players. Educación Física y Deporte, 39(2). https://doi.org/10.17533/udea.efyd.v39n2a02
  • Augustsson, S. R., Bersås, E., Thomas, E. M., Sahlberg, M., Augustsson, J., and Svantesson, U. (2009). Gender differences and reliability of selected physical performance tests in young women and men. Advances in Physiotherapy, 11(2), 64–70. https://doi.org/10.1080/14038190801999679
  • Baek, H. J., Cho, C.-H., Cho, J., and Woo, J-M. (2015). Reliability of ultra-short-term analysis as a surrogate of standard 5-min analysis of heart rate variability. Telemedicine and E-Health, 21(5), 404–414. https://doi.org/10.1089/tmj.2014.0104
  • Camm, A.J., Malik M., Bigger J.T. Jr, Breithardt G., Cerutti S., Cohen R.J., Coumel P., Fallen E.L., Kennedy H.L., Kleiger R.E., Lombardi F., Malliani A., Moss A.J., Rottman J.N., Schmidt G., Schwartz P.J., Singer D.H. (1996) Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. European Heart Journal, 17, 354–381. Retrieved from: https://pubmed.ncbi.nlm.nih.gov/8598068/
  • Cassirame, J., Tordi, N., Fabre, N., Duc, S., Durand, F., and Mourot, L. (2015). Heart rate variability to assess ventilatory threshold in ski-mountaineering. European Journal of Sport Science, 15(7), 615–622. https://doi.org/10.1080/17461391.2014.957729
  • Cheuvront, S. N., Carter, R., Deruisseau, K. C., and Moffatt, R. J. (2005). Running performance differences between men and women: An update. Sports Medicine 35(12), 1017–1024. https://doi.org/10.2165/00007256-200535120-00002
  • Chwalbinska-Moneta, J., Robergs, R. A., Costill, D. L., and Fink, W. J. (1989). Threshold for muscle lactate accumulation during progressive exercise. Journal of Applied Physiology, 66(6), 2710–2716. https://doi.org/10.1152/jappl.1989.66.6.2710
  • Cottin, F., Leprêtre, P.-M., Lopes, P., Papelier, Y., Médigue, C., and Billat, V. (2006). Assessment of ventilatory thresholds from heart rate variability in well-trained subjects during cycling. International Journal of Sports Medicine, 27(12), 959–967. https://doi.org/10.1055/s-2006-923849
  • Cottin, F., Médigue, C., Lopes, P., Leprêtre, P.-M., Heubert, R., and Billat, V. (2007). Ventilatory thresholds assessment from heart rate variability during an incremental exhaustive running test. International Journal of Sports Medicine, 28(4), 287–294. https://doi.org/10.1055/s-2006-924355
  • Dourado, V. Z., Banov, M. C., Marino, M. C., De Souza, V. L., Antunes, L. C. D. O., and McBurnie, M. A. (2010). A Simple approach to assess VT during a field walk test. International Journal of Sports Medicine, 31(10), 698–703. https://doi.org/10.1055/s-0030-1255110
  • Ekkekakis, P., Thome, J., Petruzzello, S. J., and Hall, E. E. (2008). The Preference for and Tolerance of the Intensity of Exercise Questionnaire: A Psychometric evaluation among college women. Journal of Sports Sciences, 26(5), 499–510. https://doi.org/10.1080/02640410701624523
  • Esco, M. R., and Flatt, A. A. (2014). Ultra-short-term heart rate variability indexes at rest and post-exercise in athletes: Evaluating the agreement with accepted recommendations. Journal of Sports Science and Medicine, 13(3), 535–541. Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126289/
  • Esco, M. R., Flatt, A. A., and Nakamura, F. Y. (2016). Initial weekly HRV response is related to the prospective change in VO2max in female soccer players. International Journal of Sports Medicine, 37(6), 436–441. https://doi.org/10.1055/s-0035-1569342
  • Fortes, L. S., da Costa, B. D. V, Paes, P. P., do Nascimento Júnior, J. R. A., Fiorese, L., and Ferreira, M. E. C. (2017). Influence of competitive-anxiety on heart rate variability in swimmers. Journal of Sports Science and Medicine, 16(4), 498-504. Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5721179/
  • Giles, D. A., and Draper, N. (2018). Heart rate variability during exercise: A Comparison of artefact correction methods. The Journal of Strength and Conditioning Research, 32(3), 726–735. https://doi.org/10.1519/JSC.0000000000001800.
  • Guilkey, J. P., Overstreet, M., and Mahon, A. D. (2015). Heart rate recovery and parasympathetic modulation in boys and girls following maximal and submaximal exercise. European Journal of Applied Physiology, 115(10), 2125–2133. https://doi.org/10.1007/s00421-015-3192-y
  • Hautala, A. J., Mäkikallio, T. H., Seppänen, T., Huikuri, H. V, and Tulppo, M. P. (2003). Short‐term correlation properties of R–R interval dynamics at different exercise intensity levels. Clinical Physiology and Functional Imaging, 23(4), 215–223. https://doi.org/10.1046/j.1475-097x.2003.00499.x.
  • Jamnick, N. A., Botella, J., Pyne, D. B., and Bishop, D. J. (2018). Manipulating graded exercise test variables affects the validity of the lactate threshold and _ VO 2peak. PLoS ONE, 13(7), 1–21. https://doi.org/10.1371/journal.pone.0199794
  • Karapetian, G. K., Engels, H. J., and Gretebeck, R. J. (2008). Use of heart rate variability to estimate LT and VT. International Journal of Sports Medicine, 29(08), 652–657. https://doi.org/10.1055/s-2007-989423
  • Lewis, M. J., Kingsley, M., Short, A. L., and Simpson, K. (2007). Rate of reduction of heart rate variability during exercise as an index of physical work capacity. Scandinavian Journal of Medicine and Science in Sports, 17(6), 696–702. https://doi.org/10.1111/j.1600-0838.2006.00616.x
  • Marek J. Thomas Bigger A., John Camm, Robert E., Kleiger Alberto Malliani Arthur J., Moss Peter, J. Schwartz, M., and Cardiology, T. F. of the E. S. of. (1996). Heart rate variability, standards of measurement, physiological interpretation, and clinical use. Circulation, 93(5), 1043–1065. https://doi.org/10.1161/01.CIR.93.5.1043
  • McCraty, R., and Shaffer, F. (2015). Heart rate variability: New perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Global Advances In Health and Medicine, 4(1), 46–61. https://doi.org/10.7453/gahmj.2014.073
  • Morales, J., Álamo, J. M., García-Massó, X., López, J. L., Serra-Añó, P., and González, L.-M. (2014). Use of heart rate variability in monitoring stress and recovery in judo athletes. The Journal of Strength and Conditioning Research, 28(7), 1896–1905. https://doi.org/10.1519/JSC.0000000000000328
  • Nakamura, F. Y., Flatt, A. A., Pereira, L. A., Ramirez-Campillo, R., Loturco, I., and Esco, M. R. (2015). Ultra-short-term heart rate variability is sensitive to training effects in team sports players. Journal of Sports Science and Medicine, 14(3), 602–605. Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541125/
  • Neufeld, E. V, Wadowski, J., Boland, D. M., Dolezal, B. A., and Cooper, C. B. (2019). Heart Rate Acquisition and Threshold-Based Training Increases Oxygen Uptake at Metabolic Threshold in Triathletes: A Pilot Study. International Journal of Exercise Science, 12(2), 144–154. Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6355121/
  • Poehling, C. P. (2019). The Effects of Submaximal and Maximal Exercise on Heart Rate Variability. International Journal of Exercise Science, 12(2), 9–14. Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6355137/
  • Poole, D. C., and Jones, A. M. (2017). Measurement of the maximum oxygen uptake VO2max: VO2peak is no longer acceptable. Journal of Applied Physiology, 122(4), 997–1002. https://doi.org/10.1152/japplphysiol.01063.2016
  • Perini, R., Orizio, C., Baselli, G., Cerutti, S., and Veicsteinas, A. (1990). The influence of exercise intensity on the power spectrum of heart rate variability. European Journal of Applied Physiology and Occupational Physiology. 61, 143–148. https://doi.org/10.1007/bf00236709
  • Pichon, A. P., De Bisschop, C., Roulaud, M., Denjean, A., and Papelier, Y. (2004). Spectral analysis of heart rate variability during exercise in trained subjects. Medicine & Science in Sports & Exercise. 36, 1702–1708. https://doi.org/10.1249/01.mss.0000142403.93205.35
  • Povea, C., Schmitt, L., Brugniaux, J., Nicolet, G., Richalet, J.-P., and Fouillot, J.-P. (2005). Effects of intermittent hypoxia on heart rate variability during rest and exercise. High Altitude Medicine & Biology. 6, 215–225. https://doi.org/10.1089/ham.2005.6.215
  • Ramos-Campo, D. J., Rubio-Arias, J. A., Ávila-Gandía, V., Marín-Pagán, C., Luque, A., and Alcaraz, P. E. (2017). Heart rate variability to assess ventilatory thresholds in professional basketball players. Journal of Sport and Health Science, 6(4), 468–473. https://doi.org/10.1016/j.jshs.2016.01.002
  • Radaelli, A., Valle, F., Falcone, C., Calciati, A., Leuzzi, S., Martinelli, L., et al. (1996). Determinants of heart rate variability in heart transplanted subjects during physical exercise. European Heart Journal 17, 462–471. https://doi.org/10.1093/oxfordjournals.eurheartj.a014881
  • Sanz-Quinto, S., Brizuela, G., López-Grueso, R., Flatt, A. A., Aracil-Marco, A., Reina, R., and Moya-Ramón, M. (2018). Monitoring Heart Rate Variability Before and After a Marathon in an Elite Wheelchair Athlete: A Case Study. Journal of Sports Science and Medicine, 17(4), 557-562. Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6243632/pdf/jssm-17-557.pdf
  • Sarmiento, S., García-Manso, J. M., Martín-González, J. M., Vaamonde, D., Calderón, J., and Da Silva-Grigoletto, M. E. (2013). Heart rate variability during high-intensity exercise. Journal of Systems Science and Complexity, 26(1), 104–116. https://doi.org/10.1007/s11424-013-2287-y
  • Shaffer, F., and Ginsberg, J. P. (2017). An Overview of heart rate variability metrics and norms. Frontiers in Public Health, 5, 258. https://doi.org/10.3389/fpubh.2017.00258
  • Simões, R. P., Mendes, R. G., Castello-Simões, V., Catai, A. M., Arena, R., and Borghi-Silva, A. (2016). Use of heart rate variability to estimate lactate threshold in coronary artery disease patients during resistance exercise. Journal of Sports Science and Medicine, 15(4), 649-657. Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131219/
  • Tarvainen, M. P., Niskanen, J.-P., Lipponen, J. A., Ranta-Aho, P. O., and Karjalainen, P. A. (2014). Kubios HRV–heart rate variability analysis software. Computer Methods and Programs in Biomedicine, 113(1), 210–220. https://doi.org/10.1016/j.cmpb.2013.07.024
  • Tulppo, M. P., Makikallio, T., Takala, T., Seppanen, T., and Huikuri, H. V. (1996). Quantitative beat-to-beat analysis of heart rate dynamics during exercise. American Journal of Physiology-Heart and Circulatory Physiology. 271(1), 244–252. https://doi.org/10.1152/ajpheart.1996.271.1.H244
  • Tulppo, M. P., Makikallio, T. H., Seppänen, T., Laukkanen, R. T., and Huikuri, H. V. (1998). Vagal modulation of heart rate during exercise: effects of age and physical fitness. American Journal of Physiology-Heart and Circulatory Physiology, 274(2), 424–429. https://doi.org/10.1152/ajpheart.1998.274.2.H424
  • Williams, S., West, S., Howells, D., Kemp, S. P. T., Flatt, A. A., and Stokes, K. (2018). Modelling the HRV response to training loads in elite rugby seven players. Journal of Sports Science and Medicine, 17(3), 402-408. Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6090397/
  • Xhyheri, B., Manfrini, O., Mazzolini, M., Pizzi, C., and Bugiardini, R. (2012). Heart rate variability today. Progress in Cardiovascular Diseases, 55(3), 321–331. https://doi.org/10.1016/j.pcad.2012.09.001
  • Yamamoto, Y., Hughson, R. L., and Peterson, J. C. (1991). Autonomic control of heart rate during exercise studied by heart rate variability spectral analysis. Journal of Applied Physiology, 71(3), 1136–1142. https://doi.org/10.1152/jappl.1991.71.3.1136
There are 44 citations in total.

Details

Primary Language English
Subjects Sports Medicine
Journal Section Articles
Authors

Tuncay Alparslan 0000-0003-2164-0085

Ramiz Arabacı 0000-0001-8403-5742

Recep Görgülü 0000-0003-2590-4893

Early Pub Date May 26, 2023
Publication Date June 30, 2023
Submission Date February 22, 2023
Acceptance Date May 3, 2023
Published in Issue Year 2023 Volume: 18 Issue: 1

Cite

APA Alparslan, T., Arabacı, R., & Görgülü, R. (2023). An Examination of Heart Rate Variability at Anaerobic Threshold and Respiratory Compensation Points During Cardiopulmonary Exercise Test. CBÜ Beden Eğitimi Ve Spor Bilimleri Dergisi, 18(1), 193-203. https://doi.org/10.33459/cbubesbd.1253528
AMA Alparslan T, Arabacı R, Görgülü R. An Examination of Heart Rate Variability at Anaerobic Threshold and Respiratory Compensation Points During Cardiopulmonary Exercise Test. CBÜ BESBD. June 2023;18(1):193-203. doi:10.33459/cbubesbd.1253528
Chicago Alparslan, Tuncay, Ramiz Arabacı, and Recep Görgülü. “An Examination of Heart Rate Variability at Anaerobic Threshold and Respiratory Compensation Points During Cardiopulmonary Exercise Test”. CBÜ Beden Eğitimi Ve Spor Bilimleri Dergisi 18, no. 1 (June 2023): 193-203. https://doi.org/10.33459/cbubesbd.1253528.
EndNote Alparslan T, Arabacı R, Görgülü R (June 1, 2023) An Examination of Heart Rate Variability at Anaerobic Threshold and Respiratory Compensation Points During Cardiopulmonary Exercise Test. CBÜ Beden Eğitimi ve Spor Bilimleri Dergisi 18 1 193–203.
IEEE T. Alparslan, R. Arabacı, and R. Görgülü, “An Examination of Heart Rate Variability at Anaerobic Threshold and Respiratory Compensation Points During Cardiopulmonary Exercise Test”, CBÜ BESBD, vol. 18, no. 1, pp. 193–203, 2023, doi: 10.33459/cbubesbd.1253528.
ISNAD Alparslan, Tuncay et al. “An Examination of Heart Rate Variability at Anaerobic Threshold and Respiratory Compensation Points During Cardiopulmonary Exercise Test”. CBÜ Beden Eğitimi ve Spor Bilimleri Dergisi 18/1 (June 2023), 193-203. https://doi.org/10.33459/cbubesbd.1253528.
JAMA Alparslan T, Arabacı R, Görgülü R. An Examination of Heart Rate Variability at Anaerobic Threshold and Respiratory Compensation Points During Cardiopulmonary Exercise Test. CBÜ BESBD. 2023;18:193–203.
MLA Alparslan, Tuncay et al. “An Examination of Heart Rate Variability at Anaerobic Threshold and Respiratory Compensation Points During Cardiopulmonary Exercise Test”. CBÜ Beden Eğitimi Ve Spor Bilimleri Dergisi, vol. 18, no. 1, 2023, pp. 193-0, doi:10.33459/cbubesbd.1253528.
Vancouver Alparslan T, Arabacı R, Görgülü R. An Examination of Heart Rate Variability at Anaerobic Threshold and Respiratory Compensation Points During Cardiopulmonary Exercise Test. CBÜ BESBD. 2023;18(1):193-20.