Araştırma Makalesi
BibTex RIS Kaynak Göster

A23187 Tamoksifene Dirençli Meme Kanseri Hücrelerinin Tamoksifen Duyarlılığını Geliştirebilir

Yıl 2022, , 222 - 227, 30.06.2022
https://doi.org/10.34087/cbusbed.1023372

Öz

Giriş ve Amaç: Tamoksifen, ER α-pozitif meme kanserinin tedavisinde en yaygın kullanılan terapötik bir ajandır. Ancak hastaların büyük bir kısmında tamoksifen’e karşı direnç kazanımının oluşması; terapötik etkinliği sınırlamakta ve hastalarda sağ kalım oranını azaltmaktadır. Hücre hareketliliği, gen ifadesi regülasyonu gibi çok sayıda kritik rolü olan Ca+2 sinyal mekanizması karsinogenez ile ilişkili proliferasyon, migrasyon, anjiyogenez ve ilaç direnci gelişimi gibi süreçler üzerinde önemli rollere sahiptir. Çalışmalarımızda yüksek oranda Ca+2 seçiciliği olan ve endoplazmik retikulumdan Ca+2 çıkışına aracılık eden kalsiyum iyonofor A23187 (kalsimisin)’nin tamoksifene dirençli meme kanseri hücrelerinde proliferasyon ve tamoksifen direnci üzerine olan etkisinin araştırılması amaçlanmıştır.
Gereç ve Yöntemler: A23187 veya Tamoksifen ile A23187 kombine uygulamasının Tamoksifene dirençli meme kanseri hücresi MCF-7/TAMR-1’de hücre proliferasyonu üzerine olan etkisini değerlendirmek amacıyla WST-1 temelli hücre proliferasyon analizleri gerçekleştirilmiştir. Ayrıca mikroskobik incelemeler yapılarak fotoğraflanmıştır. Bulgular: A21387’nin MCF-7/TAMR-1 hücreleri üzerindeki anti-proliferatif etkinliğe sahip olduğunu göstermiştir. A23187 ile tamoksifen’in kombine uygulaması ile hücrelerdeki tamoksifen direncini sınırlandırarak sinerjistik olarak hücrelerin proliferatif kapasitesini sınırladığı belirlenmiştir.
Sonuç: Bulgularımız, A23187 aracılı kalsiyum sinyalinin modülasyonunun meme kanseri hücrelerinde tamoksifen duyarlılığının ilerletilmesinde umut verici bir yaklaşım olabileceğini önermektedir.

Destekleyen Kurum

Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

TSG-2021-8302

Kaynakça

  • Torre, LA, Bray, F, Siegel, R.L, Ferlay, J, Lortet-Tieulent, J, Jemal, A, Global cancer statistics, 2012, CA: a cancer journal for clinicians, 2015, 65(2), 87-108.
  • Cardoso, F, Paluch-Shimon, S, Senkus, E. 5th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 5). 2020.
  • Prat, A, Perou, C.M, Deconstructing the molecular portraits of breast cancer, Molecular oncology, 2011, 5(1), 5-23.
  • Harbeck, N, Gnant, M. Breast cancer, The Lancet, 2017, p. 1134–50. Available from: http://dx.doi.org/10.1016/s0140-6736(16)31891-8
  • Santen, R.J, Brodie, H, Simpson, E.R, Siiteri, P.K, Brodie, A. History of aromatase: saga of an important biological mediator and therapeutic target, Endocrine reviews, 2009, 30(4), 343-375.
  • Dixon, J.M, Endocrine resistance in breast cancer, New Journal of Science, 2014, 2014.
  • Liu, S, Han, S.J, Smith, C.L, Cooperative activation of gene expression by agonists and antagonists mediated by estrogen receptor heteroligand dimer complexes, Molecular pharmacology, 2013, 83(5), 1066-1077.
  • An, K.C, Selective estrogen receptor modulators, Asian Spine Journal, 2016, 10(4), 787.
  • Osborne, C.K, Schiff, R. Mechanisms of endocrine resistance in breast cancer, Annual review of medicine, 2011, 62, 233-247.
  • Abdel-Hafiz, H.A, Epigenetic mechanisms of tamoxifen resistance in luminal breast cancer, Diseases, 2017, 5(3), 16.
  • Bagur, R, Hajnóczky, G, Intracellular Ca2+ sensing: its role in calcium homeostasis and signaling, Molecular cell, 2017, 66(6), 780-788.
  • Berridge, M.J, Lipp, P, Bootman, M.D, The versatility and universality of calcium signalling, Nature reviews Molecular cell biology, 2000, 1(1), 11-21.
  • Wakai, T, Vanderheyden, V, Fissore, R.A, Ca2+ signaling during mammalian fertilization: requirements, players, and adaptations, Cold Spring Harbor perspectives in biology, 2011, 3(4), a006767.
  • Hagenston, A.M, Bading, H. Calcium signaling in synapse-to-nucleus communication, Cold Spring Harbor perspectives in biology, 2011, 3(11), a004564.
  • Bezprozvanny, I. Calcium signaling and neurodegenerative diseases, Trends in molecular medicine, 2009, 15(3), 89-100.
  • Jayakumar, S, Hasan, G. Neuronal calcium signaling in metabolic regulation and adaptation to nutrient stress, Frontiers in neural circuits, 2018, 12, 25.
  • Varghese, E, Samuel, S.M, Sadiq, Z, Kubatka, P, Liskova, A, Benacka, J, et al. Anti-cancer agents in proliferation and cell death: the calcium connection, International journal of molecular sciences, 2019, 20(12), 3017.
  • Marchi, S, Giorgi, C, Galluzzi, L, Pinton, P. Ca2+ fluxes and cancer, Molecular cell, 2020, 78(6), 1055-1069.
  • So, C.L, Saunus, J.M, Roberts-Thomson, S.J, Monteith, G.R, Calcium signalling and breast cancer. In: Seminars in Cell & Developmental Biology, Academic Press, 2019. p. 74-83.
  • Roberts-Thomson, S.J, Chalmers, S.B, Monteith, G.R, The calcium-signaling toolkit in cancer: remodeling and targeting, Cold Spring Harbor Perspectives in Biology, 2019, 11(8), a035204.
  • Saldías, M.P, Maureira, D, Orellana-Serradell, O, Silva, I, Lavanderos, B, Cruz, P, et al. TRP channels interactome as a novel therapeutic target in breast cancer, Frontiers in oncology, 2021, 1321.
  • White, C.D, Sacks, D.B, Regulation of MAP kinase signaling by calcium, In: MAP Kinase Signaling Protocols, Humana Press, Totowa, N.J, 2010. p. 151-165.
  • Aitken, R.J, Paterson, M, Fisher, H, Buckingham, D.W, van Duin, M, Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function, Journal of Cell Science, 1995, 108(5), 2017-2025.
  • Hasegawa, G, Akatsuka, K, Nakashima, Y, Yokoe, Y, Higo, N, Shimonaka, M. Tamoxifen inhibits the proliferation of non‑melanoma skin cancer cells by increasing intracellular calcium concentration, International journal of oncology, 2018, 53(5), 2157-2166.
  • Zhang, W, Couldwell, W.T, Song, H, Takano, T, Lin, J.H, Nedergaard, M, Tamoxifen-induced enhancement of calcium signaling in glioma and MCF-7 breast cancer cells, Cancer Research, 2000, 60(19), 5395-5400.
  • Madsen, M.W, Reiter, B.E, Lykkesfeldt, A.E, Differential expression of estrogen receptor mRNA splice variants in the tamoxifen resistant human breast cancer cell line, MCF-7/TAMR-1 compared to the parental MCF-7 cell line, Molecular and cellular endocrinology, 1995, 109(2), 197-207.
  • Jiang, Q, Zheng, S, Wang, G, Development of new estrogen receptor-targeting therapeutic agents for tamoxifen-resistant breast cancer, Future medicinal chemistry, 2013, 5(9), 1023-1035.
  • Reed, P.W, Lardy, H.A, A23187: a divalent cation ionophore, Journal of Biological Chemistry, 1972, 247(21), 6970-6977.
  • Zmijewski, MJ, Wong, R, Paschal, J.W, Dorman, D.E, The biosynthesis of antibiotic A23187, Tetrahedron, 1983, 39(8), 1255-1263.
  • Chaney, M.O, Demarco, P.V, Jones, N.D, Occolowitz, J.L, Structure of A23187, a divalent cation ionophore, Journal of the American Chemical Society, 1974, 96(6), 1932-1933.
  • Verma, M, Wills, Z, Chu, C.T, Excitatory Dendritic Mitochondrial Calcium Toxicity: Implications for Parkinson’s and Other Neurodegenerative Diseases, Frontiers in neuroscience, 2018, 523.
  • Brookes, P.S, Yoon, Y, Robotham, J.L, Anders, M.W, Sheu, S.S, Calcium, ATP, and ROS: a mitochondrial love-hate triangle, American Journal of Physiology-Cell Physiology, 2004.
  • Ivanova, H, Kerkhofs, M, La, Rovere, R.M, Bultynck, G, Endoplasmic Reticulum-Mitochondrial Ca2+ Fluxes Underlying Cancer Cell Survival, Frontiers in oncology, 2017, 7,70.
  • de Castro, I.P, Martins, L.M, Tufi, R, Mitochondrial quality control and neurological disease: an emerging connection, Expert reviews in molecular medicine, 2010, 12.
  • Chen, J.S.K, Konopleva, M, Andreeff, M, Multani, A.S, Pathak, S, Mehta, K, Drug-resistant breast carcinoma (MCF-7) cells are paradoxically sensitive to apoptosis, Journal of cellular physiology, 2004, 200(2), 223-234.
  • Chen, J.S.K, Agarwal, N, Mehta, K. Multidrug-resistant MCF-7 breast cancer cells contain deficient intracellular calcium pools, Breast cancer research and treatment, 2002, 71(3), 237-247.

A23187 May Improve Tamoxifen Sensitivity of Tamoxifen-Resistant Breast Cancer Cells

Yıl 2022, , 222 - 227, 30.06.2022
https://doi.org/10.34087/cbusbed.1023372

Öz

Objective: Tamoxifen is the most widely used therapeutic agent for the treatment of ER α-positive breast cancer. However, the development of resistance to tamoxifen in the majority of patients limits the therapeutic efficacy of tamoxifen and reduces the survival rate of patients. Ca+2 signaling mechanism, which has many critical roles including cell motility and gene expression regulation, has important roles in processes such as proliferation, migration, angiogenesis, and drug resistance development related to carcinogenesis. In this study, we aimed to investigate the effect of Calcium ionophore A23187 (calcimicin), which has high Ca+2 selectivity and mediates Ca+2 output from the endoplasmic reticulum, on proliferation and tamoxifen resistance in tamoxifen-resistant breast cancer cells.
Materials and Methods: WST-1-based cell proliferation analyzes were performed to evaluate the effect of A23187 or Tamoxifen and A23187 combined treatment on cell proliferation in Tamoxifen-resistant breast cancer cells MCF-7/TAMR-1. In addition, microscopic examinations were performed and photographed.
Results: A21387 has an antiproliferative effect on MCF-7/TAMR-1 cells. Moreover, a combined treatment of A23187 and tamoxifen synergistically reduced the proliferative capacity of cells manner dose-dependent by limiting tamoxifen resistance.
Conclusion: Our findings suggest that modulation of calcium signaling by A23187 may be a promising approach to improve tamoxifen sensitivity in breast cancer cells.

Proje Numarası

TSG-2021-8302

Kaynakça

  • Torre, LA, Bray, F, Siegel, R.L, Ferlay, J, Lortet-Tieulent, J, Jemal, A, Global cancer statistics, 2012, CA: a cancer journal for clinicians, 2015, 65(2), 87-108.
  • Cardoso, F, Paluch-Shimon, S, Senkus, E. 5th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 5). 2020.
  • Prat, A, Perou, C.M, Deconstructing the molecular portraits of breast cancer, Molecular oncology, 2011, 5(1), 5-23.
  • Harbeck, N, Gnant, M. Breast cancer, The Lancet, 2017, p. 1134–50. Available from: http://dx.doi.org/10.1016/s0140-6736(16)31891-8
  • Santen, R.J, Brodie, H, Simpson, E.R, Siiteri, P.K, Brodie, A. History of aromatase: saga of an important biological mediator and therapeutic target, Endocrine reviews, 2009, 30(4), 343-375.
  • Dixon, J.M, Endocrine resistance in breast cancer, New Journal of Science, 2014, 2014.
  • Liu, S, Han, S.J, Smith, C.L, Cooperative activation of gene expression by agonists and antagonists mediated by estrogen receptor heteroligand dimer complexes, Molecular pharmacology, 2013, 83(5), 1066-1077.
  • An, K.C, Selective estrogen receptor modulators, Asian Spine Journal, 2016, 10(4), 787.
  • Osborne, C.K, Schiff, R. Mechanisms of endocrine resistance in breast cancer, Annual review of medicine, 2011, 62, 233-247.
  • Abdel-Hafiz, H.A, Epigenetic mechanisms of tamoxifen resistance in luminal breast cancer, Diseases, 2017, 5(3), 16.
  • Bagur, R, Hajnóczky, G, Intracellular Ca2+ sensing: its role in calcium homeostasis and signaling, Molecular cell, 2017, 66(6), 780-788.
  • Berridge, M.J, Lipp, P, Bootman, M.D, The versatility and universality of calcium signalling, Nature reviews Molecular cell biology, 2000, 1(1), 11-21.
  • Wakai, T, Vanderheyden, V, Fissore, R.A, Ca2+ signaling during mammalian fertilization: requirements, players, and adaptations, Cold Spring Harbor perspectives in biology, 2011, 3(4), a006767.
  • Hagenston, A.M, Bading, H. Calcium signaling in synapse-to-nucleus communication, Cold Spring Harbor perspectives in biology, 2011, 3(11), a004564.
  • Bezprozvanny, I. Calcium signaling and neurodegenerative diseases, Trends in molecular medicine, 2009, 15(3), 89-100.
  • Jayakumar, S, Hasan, G. Neuronal calcium signaling in metabolic regulation and adaptation to nutrient stress, Frontiers in neural circuits, 2018, 12, 25.
  • Varghese, E, Samuel, S.M, Sadiq, Z, Kubatka, P, Liskova, A, Benacka, J, et al. Anti-cancer agents in proliferation and cell death: the calcium connection, International journal of molecular sciences, 2019, 20(12), 3017.
  • Marchi, S, Giorgi, C, Galluzzi, L, Pinton, P. Ca2+ fluxes and cancer, Molecular cell, 2020, 78(6), 1055-1069.
  • So, C.L, Saunus, J.M, Roberts-Thomson, S.J, Monteith, G.R, Calcium signalling and breast cancer. In: Seminars in Cell & Developmental Biology, Academic Press, 2019. p. 74-83.
  • Roberts-Thomson, S.J, Chalmers, S.B, Monteith, G.R, The calcium-signaling toolkit in cancer: remodeling and targeting, Cold Spring Harbor Perspectives in Biology, 2019, 11(8), a035204.
  • Saldías, M.P, Maureira, D, Orellana-Serradell, O, Silva, I, Lavanderos, B, Cruz, P, et al. TRP channels interactome as a novel therapeutic target in breast cancer, Frontiers in oncology, 2021, 1321.
  • White, C.D, Sacks, D.B, Regulation of MAP kinase signaling by calcium, In: MAP Kinase Signaling Protocols, Humana Press, Totowa, N.J, 2010. p. 151-165.
  • Aitken, R.J, Paterson, M, Fisher, H, Buckingham, D.W, van Duin, M, Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function, Journal of Cell Science, 1995, 108(5), 2017-2025.
  • Hasegawa, G, Akatsuka, K, Nakashima, Y, Yokoe, Y, Higo, N, Shimonaka, M. Tamoxifen inhibits the proliferation of non‑melanoma skin cancer cells by increasing intracellular calcium concentration, International journal of oncology, 2018, 53(5), 2157-2166.
  • Zhang, W, Couldwell, W.T, Song, H, Takano, T, Lin, J.H, Nedergaard, M, Tamoxifen-induced enhancement of calcium signaling in glioma and MCF-7 breast cancer cells, Cancer Research, 2000, 60(19), 5395-5400.
  • Madsen, M.W, Reiter, B.E, Lykkesfeldt, A.E, Differential expression of estrogen receptor mRNA splice variants in the tamoxifen resistant human breast cancer cell line, MCF-7/TAMR-1 compared to the parental MCF-7 cell line, Molecular and cellular endocrinology, 1995, 109(2), 197-207.
  • Jiang, Q, Zheng, S, Wang, G, Development of new estrogen receptor-targeting therapeutic agents for tamoxifen-resistant breast cancer, Future medicinal chemistry, 2013, 5(9), 1023-1035.
  • Reed, P.W, Lardy, H.A, A23187: a divalent cation ionophore, Journal of Biological Chemistry, 1972, 247(21), 6970-6977.
  • Zmijewski, MJ, Wong, R, Paschal, J.W, Dorman, D.E, The biosynthesis of antibiotic A23187, Tetrahedron, 1983, 39(8), 1255-1263.
  • Chaney, M.O, Demarco, P.V, Jones, N.D, Occolowitz, J.L, Structure of A23187, a divalent cation ionophore, Journal of the American Chemical Society, 1974, 96(6), 1932-1933.
  • Verma, M, Wills, Z, Chu, C.T, Excitatory Dendritic Mitochondrial Calcium Toxicity: Implications for Parkinson’s and Other Neurodegenerative Diseases, Frontiers in neuroscience, 2018, 523.
  • Brookes, P.S, Yoon, Y, Robotham, J.L, Anders, M.W, Sheu, S.S, Calcium, ATP, and ROS: a mitochondrial love-hate triangle, American Journal of Physiology-Cell Physiology, 2004.
  • Ivanova, H, Kerkhofs, M, La, Rovere, R.M, Bultynck, G, Endoplasmic Reticulum-Mitochondrial Ca2+ Fluxes Underlying Cancer Cell Survival, Frontiers in oncology, 2017, 7,70.
  • de Castro, I.P, Martins, L.M, Tufi, R, Mitochondrial quality control and neurological disease: an emerging connection, Expert reviews in molecular medicine, 2010, 12.
  • Chen, J.S.K, Konopleva, M, Andreeff, M, Multani, A.S, Pathak, S, Mehta, K, Drug-resistant breast carcinoma (MCF-7) cells are paradoxically sensitive to apoptosis, Journal of cellular physiology, 2004, 200(2), 223-234.
  • Chen, J.S.K, Agarwal, N, Mehta, K. Multidrug-resistant MCF-7 breast cancer cells contain deficient intracellular calcium pools, Breast cancer research and treatment, 2002, 71(3), 237-247.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Biyokimya ve Hücre Biyolojisi (Diğer), Sağlık Kurumları Yönetimi
Bölüm Araştırma Makalesi
Yazarlar

Yalçın Erzurumlu 0000-0001-6835-4436

Deniz Çataklı 0000-0001-7327-5396

Proje Numarası TSG-2021-8302
Yayımlanma Tarihi 30 Haziran 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Erzurumlu, Y., & Çataklı, D. (2022). A23187 Tamoksifene Dirençli Meme Kanseri Hücrelerinin Tamoksifen Duyarlılığını Geliştirebilir. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 9(2), 222-227. https://doi.org/10.34087/cbusbed.1023372
AMA Erzurumlu Y, Çataklı D. A23187 Tamoksifene Dirençli Meme Kanseri Hücrelerinin Tamoksifen Duyarlılığını Geliştirebilir. CBU-SBED. Haziran 2022;9(2):222-227. doi:10.34087/cbusbed.1023372
Chicago Erzurumlu, Yalçın, ve Deniz Çataklı. “A23187 Tamoksifene Dirençli Meme Kanseri Hücrelerinin Tamoksifen Duyarlılığını Geliştirebilir”. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 9, sy. 2 (Haziran 2022): 222-27. https://doi.org/10.34087/cbusbed.1023372.
EndNote Erzurumlu Y, Çataklı D (01 Haziran 2022) A23187 Tamoksifene Dirençli Meme Kanseri Hücrelerinin Tamoksifen Duyarlılığını Geliştirebilir. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 9 2 222–227.
IEEE Y. Erzurumlu ve D. Çataklı, “A23187 Tamoksifene Dirençli Meme Kanseri Hücrelerinin Tamoksifen Duyarlılığını Geliştirebilir”, CBU-SBED, c. 9, sy. 2, ss. 222–227, 2022, doi: 10.34087/cbusbed.1023372.
ISNAD Erzurumlu, Yalçın - Çataklı, Deniz. “A23187 Tamoksifene Dirençli Meme Kanseri Hücrelerinin Tamoksifen Duyarlılığını Geliştirebilir”. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 9/2 (Haziran 2022), 222-227. https://doi.org/10.34087/cbusbed.1023372.
JAMA Erzurumlu Y, Çataklı D. A23187 Tamoksifene Dirençli Meme Kanseri Hücrelerinin Tamoksifen Duyarlılığını Geliştirebilir. CBU-SBED. 2022;9:222–227.
MLA Erzurumlu, Yalçın ve Deniz Çataklı. “A23187 Tamoksifene Dirençli Meme Kanseri Hücrelerinin Tamoksifen Duyarlılığını Geliştirebilir”. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, c. 9, sy. 2, 2022, ss. 222-7, doi:10.34087/cbusbed.1023372.
Vancouver Erzurumlu Y, Çataklı D. A23187 Tamoksifene Dirençli Meme Kanseri Hücrelerinin Tamoksifen Duyarlılığını Geliştirebilir. CBU-SBED. 2022;9(2):222-7.