Research Article
BibTex RIS Cite

Epigallokateşin-3-gallat'ın benign prostat hiperplazi hücrelerinde migrasyon ve enflamasyon ile ilişkili genlerin transkripsiyonel regülasyonuna etkisi

Year 2021, Volume: 8 Issue: 2, 323 - 330, 30.06.2021
https://doi.org/10.34087/cbusbed.831854

Abstract

Giriş ve Amaç: Bu çalışmada epigallokateşin-3-gallat’ın (EGCG) benign prostat hiperplazisi hücrelerinde migrasyon ve inflamasyon ile ilişkili genlerin transkripsiyonel regülasyonundaki rolünün araştırılması amaçlanmıştır.
Gereç ve Yöntemler: EGCG uygulamasının migrasyon ile ilişkili FAK, PXN, RhoA, Rac1, Cdc42, PAK1, ROCK1, WASL genlerinin ve inflamasyon ile ilişkili IL-8, IL-6, NFκB p50, NFκB p65, IκBα genlerinin ekspresyonları üzerine etkisi kantitatif gerçek zamanlı-polimeraz zincir reaksiyonu (qRT-PCR) kullanılarak tespit edildi.
Bulgular: EGCG uygulamasının araştırılan genlerin mRNA seviyelerinde 2 kattan fazla anlamlı bir değişikliğe yol açmadığı belirlendi. Protein fosforilasyonlarını ve seviyelerini etkili bir şekilde baskılayan EGCG’nin, migrasyon ve inflamasyon ile ilişkili genlerin transkripsiyonel regülasyonunda rol oynamadığı belirlenmiştir. Elde edilen sonuçlar, EGCG’nin büyük olasılıkla mRNA seviyelerini etkilemeden protein fonksiyonunu değiştirerek FAK ve NFκB sinyal yolaklarınının aktivitesini azalttığını göstermektedir.
Sonuç: EGCG’nin alt idrar yolu semptomları ve BPH gibi premalign lezyonların tedavisinde faydalı olabileceği ve etki mekanizmasının baskın olarak post-translasyonel seviyede gerçekleştiği düşünülmektedir.

Supporting Institution

TÜBİTAK

Project Number

113S700

References

  • Ke, Z.B, Cai, H, et al., Identification of key genes and pathways in benign prostatic hyperplasia, Journal of Cellular Physiology, 2019, 234(11), 19942-19950.
  • Zhou, J, Lei, Y, Chen, J, Zhou, X, Potential ameliorative effects of epigallocatechin-gallate against testosterone-induced benign prostatic hyperplasia and fibrosis in rats, International Immunopharmacology, 2018, 64, 162-169.
  • Penna, G, Fibbi, B, et al., The Vitamin D Receptor Agonist Elocalcitol Inhibits IL-8-Dependent Benign Prostatic Hyperplasia Stromal Cell Proliferation and Inflammatory Response by Targeting the RhoA/RhoKinase and NF-kB Pathways, The Prostate, 2009, 69, 480-493.
  • Iglesias-Gato, D, Carsten, T, et al., Androgen-independent effects of Serenoa repens extract (Prostasan®) on prostatic epithelial cell proliferation and inflammation, Phytotherapy Research: PTR, 2012, 26(2), 259-264.
  • Eleazu, C, Eleazu, K, Kalu, W, Management of Benign Prostatic Hyperplasia: could dietary polyphenols be an alternative to existing therapies?, Frontiers and Pharmacology, 2017, 8(234), 1-11.
  • Briganti, A, Capitanio, U, et al., Benign prostatic hyperplasia and its etiologies, European Urology Supplements, 2009, 8, 865-71.
  • De Nunzio, C, Kramer, G, et al., The controversial relationship between benign prostatic hyperplasia and prostate cancer: the role of inflammation, European Urology, 2011, 60, 106–117.
  • Untergasser, G, Madersbacher, S, Berger, P, Benign prostatic hyperplasia: age-related tissue-remodeling, Experimental Gerontology, 2005, 40, 121–128.
  • Roberts, R.O, Jacobson, D.J, Rhodes, T, Klee, G.G, Leiber, M.M, Jacobsen, S.J, Serum sex hormones and measures of benign prostatic hyperplasia, Prostate, 2004, 61(2), 124-131.
  • Giri, D, Ittmann, M. Interleukin-8 is a paracrine inducer of fibroblast growth factor 2, a stromal and epithelial growth factor in benign prostatic hyperplasia, The American Journal of Pathology, 2001, 159, 139-147.
  • Chughtai, B, Lee, R, Te, A, Kaplan, S, Role of Inflammation in Benign Prostatic Hyperplasia, Reviews in Urology, 2011, 13, 147-150.
  • Minciullo, P.L, Inferrera, A, Navarra, M, Calapai, G, Magno, C, Gangemi, S, Oxidative stress in benign prostatic hyperplasia: a systematic review, Urologia Internationalis, 2015, 94(3), 249–254.
  • Wang, L, Yang, J.R, Yang, L.Y, Liu, Z.T, Chronic inflammation in benign prostatic hyperplasia: implications for therapy, Medical Hypotheses, 2008, 70(5), 1021-1023.
  • Erbaykent Tepedelen, B, Soya, E, Korkmaz, M, Epigallocatechin-3-gallate reduces the proliferation of benign prostatic hyperplasia cells via regulation of focal adhesions, Life Sciences, 2017, 191, 74-81.
  • Sarbishegi, M, Khani, M, Salimi, S, Valizadeh, M, Sargolzaei Aval, F, Antiproliferative and antioxidant effects of Withania coagulans extract on benign prostatic hyperplasia in rats, Nephro-Urology Monthly, 2016, 8(1), e33180.
  • Grant, P, Ramasamy, S. An update on plant derived anti-androgens, International Journal of Endocrinology and Metabolism, 2012, 10(2), 497-502.
  • Hiipakka, R.A, Zhang, H.Z, Dai, W, Dai, Q, Liao, S, Structure-activity relationships for inhibition of human 5α-reductases by polyphenols, Biochemical Pharmacology, 2002, 63, 1165-1176.
  • Negri, A, Naponelli, V, Rizzi, F, Bettuzzi, S, Molecular Targets of Epigallocatechin-Gallate (EGCG): A Special Focus on Signal Transduction and Cancer, Nutrients, 2018, 10(12), 1936.
  • Singh, B.N, Shankar, S, Srivastava, R.K, Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications, Biochemical Pharmacology, 2011, 82(12), 1807-1821.
  • Luo, X, Guo, L, Zhang, L, Hu, Y, Shang, D, Ji, D, Bioinformatics analysis of microarray profiling identifies the mechanism of focal adhesion kinase signalling pathway in proliferation and apoptosis of breast cancer cells modulated by green tea polyphenol epigallocatechin 3-gallate. The Journal of Pharmacy and Pharmacology, 2018, 70(12), 1606–1618.
  • Sen, T, Dutta, A, Chatterjee, A, Epigallocatechin-3-gallate (EGCG) downregulates gelatinase-B (MMP-9) by involvement of FAK/ERK/NFkappaB and AP-1 in the human breast cancer cell line MDA-MB-231, Anti-cancer Drugs, 2010, 21(6), 632–644.
  • Khan, N, Afaq, F, Saleem, M, Ahmad, N, Mukhtar, H, Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate, Cancer Research, 2006, 66(5), 2500–2505.
  • Bettuzzi, S, Brausi, M, Rizzi, F, Castagnetti, G, Peracchia, G, Corti, A, Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: a preliminary report from a one-year proof-of-principle study, Cancer Research, 2006, 66(2), 1234–1240.
  • Chen, J, Song, H, Protective potential of epigallocatechin-3-gallate against benign prostatic hyperplasia in metabolic syndrome rats, Environmental Toxicology and Pharmacology, 2016, 45, 315–320.
  • Ganguly, K.K, Sen, T, Pal, S, Biswas, J, Chatterjee, A, Studies on focal adhesion kinase in human breast cancer cell MDA-MB-231, Advances in Biological Chemistry, 2012, 2, 29–42.
  • Chan, C.M, Huang, J.H, Chiang, H.S, Wu, W.B, Lin, H.H, Hong, J.Y, Hung, C.F, Effects of (−)-epigallocatechin gallate on RPE cell migration and adhesion, Molecular Vision, 2010, 16, 586-595.
  • Sajadimajd, S, Bahramsoltani, R, et al., Advances on Natural Polyphenols as Anticancer Agents for Skin Cancer, Pharmacological Research, 2020, 151, 104584.
  • Zhang, C.H, Wang, J.X, Cai, M.L, Shao, R, Liu, H, Zhao, W.L, The roles and mechanisms of G3BP1 in tumour promotion, Journal of Drug Targeting, 2019, 27(3), 300-305.
  • Hwang, Y.S, Park, K.K, Chung, W.Y, Epigallocatechin-3 gallate inhibits cancer invasion by repressing functional invadopodia formation in oral squamous cell carcinoma, European Journal of Pharmacology, 2013, 715, 286-295.
  • Tsujimura, A, Fukuhara, S, et al., Histologic evaluation of human benign prostatic hyperplasia treated by dutasteride: a study by xenograft model with improved severe combined immunodeficient mice, Urology, 2015, 85(1), 274.e1–274.e8.
  • Vu, H.A, Beppu, Y, et al., Green tea epigallocatechin gallate exhibits anticancer effect in human pancreatic carcinoma cells via the inhibition of both focal adhesion kinase and insulin-like growth factor-I receptor, Journal of Biomedicine & Biotechnology, 2010, 2010, 290516.
  • Wang, S.I, Mukhtar, H, Gene expression profile in human prostate LNCaP cancer cells by (2) epigallocatechin-3-gallate, Cancer Letters, 2002, 182, 43–51.
  • Okabe, S, Fujimoto, N, Sueoka, N, Suganuma, M, Fujiki, H, Modulation of gene expression by (–)-epigallocatechin gallate in PC-9 cells using a cDNA expression array, Biological and Pharmaceutical Bulletin, 2001, 24(8), 883–886.
  • Ahn, W.S, Huh, S.W, et al., A major constituent of green tea, EGCG, inhibits the growth of a human cervical cancer cell line, CaSki cells, through apoptosis, G (1) arrest, and regulation of gene expression, DNA Cell Biology, 2003, 22(3), 217–224.
  • Sartipp our, M.R, Heber, D, et al., cDNA microarray analysis of endothelial cells in response to green tea reveals a suppressive phenotype, International Journal of Oncology, 2004, 25(1), 193-202.
  • Guo, S, Yang, S, Taylor, C, Sonenshein, G.E, Green tea polyphenol epigallocatechin-3 gallate (EGCG) affects gene expression of breast cancer cells transformed by the carcinogen 7,12-dimethylbenz[a]anthracene, The Journal of Nutrition, 2005, 135, 2978S–2986S.
  • Murphy, J.M, Jeong, K, et al., FAK and Pyk2 activity promote TNF-α and IL-1β-mediated pro-inflammatory gene expression and vascular inflammation, Scientific Reports, 2019, 9, 7617.
  • Hoffmann, E, Breiholz, O.D, Holtmann, H, Kracht, M, Multiple control of interleukin-8 gene expression, Journal of Leukocyte Biology, 2002, 72, 847-855.
  • Hsu, A, Bruno, R.S, et al., Dietary soy and tea mitigate chronic inflammation and prostate cancer via NFκB pathway in the Noble rat model, The Journal of Nutritional Biochemistry, 2011, 22(5), 502-510.
  • Baloğlu M, Özkorkmaz E.G, Menisküs Yırtığı Hastalarının Sinoviyal Hücrelerinde Matriks Metalloprotein-2 ve NFκB Protein Ekspresyonu, Celal Bayar University-Health Science Institute Journal, 2019, 6(4), 209-214.
  • Cicero, A.F, Allkanjari, O, et al., Nutraceutical treatment and prevention of benign prostatic hyperplasia and prostate cancer, Archivio Italiano di Urologia e Andrologia, 2019, 91(3), 139-152.

The Effect Of Epigallocatechin-3-Gallate On Transcriptional Regulation Of Migration And Inflammation Related Genes In Benign Prostate Hyperplasia Cells

Year 2021, Volume: 8 Issue: 2, 323 - 330, 30.06.2021
https://doi.org/10.34087/cbusbed.831854

Abstract

Objective: This study was aimed to evaluate the role of epigallocatechin-3-gallate (EGCG) in the transcriptional regulation of genes associated with migration and inflammation in benign prostate hyperplasia (BPH-1) cells.
Material and Methods: Effect of EGCG treatment on expressions of FAK, PXN, RhoA, Rac1, Cdc42, PAK1, ROCK1, WASL genes related to migration and IL-8, IL-6, NFκB p50, NFκB p65, IκBα genes related to inflammation were determined by quantitative real time-polymerase chain reaction (qRT-PCR).
Results: It was determined that EGCG treatment did not significantly change the expressions of investigated genes over 2 fold in terms of mRNA levels. EGCG, which effectively suppresses protein phosphorylations and levels, does not play a role in transcriptional regulation of migration and inflammation-related genes. These results show that EGCG probably reduces the activity of FAK and NFκB signaling pathways by altering the protein function without affecting mRNA levels.
Conclusion: It is thought that EGCG may be useful in the treatment of premalignant lesions such as LUTS (lower urinary tract symptoms) and BPH, and its mechanism of action can be predominantly realized at post-translational level.

Project Number

113S700

References

  • Ke, Z.B, Cai, H, et al., Identification of key genes and pathways in benign prostatic hyperplasia, Journal of Cellular Physiology, 2019, 234(11), 19942-19950.
  • Zhou, J, Lei, Y, Chen, J, Zhou, X, Potential ameliorative effects of epigallocatechin-gallate against testosterone-induced benign prostatic hyperplasia and fibrosis in rats, International Immunopharmacology, 2018, 64, 162-169.
  • Penna, G, Fibbi, B, et al., The Vitamin D Receptor Agonist Elocalcitol Inhibits IL-8-Dependent Benign Prostatic Hyperplasia Stromal Cell Proliferation and Inflammatory Response by Targeting the RhoA/RhoKinase and NF-kB Pathways, The Prostate, 2009, 69, 480-493.
  • Iglesias-Gato, D, Carsten, T, et al., Androgen-independent effects of Serenoa repens extract (Prostasan®) on prostatic epithelial cell proliferation and inflammation, Phytotherapy Research: PTR, 2012, 26(2), 259-264.
  • Eleazu, C, Eleazu, K, Kalu, W, Management of Benign Prostatic Hyperplasia: could dietary polyphenols be an alternative to existing therapies?, Frontiers and Pharmacology, 2017, 8(234), 1-11.
  • Briganti, A, Capitanio, U, et al., Benign prostatic hyperplasia and its etiologies, European Urology Supplements, 2009, 8, 865-71.
  • De Nunzio, C, Kramer, G, et al., The controversial relationship between benign prostatic hyperplasia and prostate cancer: the role of inflammation, European Urology, 2011, 60, 106–117.
  • Untergasser, G, Madersbacher, S, Berger, P, Benign prostatic hyperplasia: age-related tissue-remodeling, Experimental Gerontology, 2005, 40, 121–128.
  • Roberts, R.O, Jacobson, D.J, Rhodes, T, Klee, G.G, Leiber, M.M, Jacobsen, S.J, Serum sex hormones and measures of benign prostatic hyperplasia, Prostate, 2004, 61(2), 124-131.
  • Giri, D, Ittmann, M. Interleukin-8 is a paracrine inducer of fibroblast growth factor 2, a stromal and epithelial growth factor in benign prostatic hyperplasia, The American Journal of Pathology, 2001, 159, 139-147.
  • Chughtai, B, Lee, R, Te, A, Kaplan, S, Role of Inflammation in Benign Prostatic Hyperplasia, Reviews in Urology, 2011, 13, 147-150.
  • Minciullo, P.L, Inferrera, A, Navarra, M, Calapai, G, Magno, C, Gangemi, S, Oxidative stress in benign prostatic hyperplasia: a systematic review, Urologia Internationalis, 2015, 94(3), 249–254.
  • Wang, L, Yang, J.R, Yang, L.Y, Liu, Z.T, Chronic inflammation in benign prostatic hyperplasia: implications for therapy, Medical Hypotheses, 2008, 70(5), 1021-1023.
  • Erbaykent Tepedelen, B, Soya, E, Korkmaz, M, Epigallocatechin-3-gallate reduces the proliferation of benign prostatic hyperplasia cells via regulation of focal adhesions, Life Sciences, 2017, 191, 74-81.
  • Sarbishegi, M, Khani, M, Salimi, S, Valizadeh, M, Sargolzaei Aval, F, Antiproliferative and antioxidant effects of Withania coagulans extract on benign prostatic hyperplasia in rats, Nephro-Urology Monthly, 2016, 8(1), e33180.
  • Grant, P, Ramasamy, S. An update on plant derived anti-androgens, International Journal of Endocrinology and Metabolism, 2012, 10(2), 497-502.
  • Hiipakka, R.A, Zhang, H.Z, Dai, W, Dai, Q, Liao, S, Structure-activity relationships for inhibition of human 5α-reductases by polyphenols, Biochemical Pharmacology, 2002, 63, 1165-1176.
  • Negri, A, Naponelli, V, Rizzi, F, Bettuzzi, S, Molecular Targets of Epigallocatechin-Gallate (EGCG): A Special Focus on Signal Transduction and Cancer, Nutrients, 2018, 10(12), 1936.
  • Singh, B.N, Shankar, S, Srivastava, R.K, Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications, Biochemical Pharmacology, 2011, 82(12), 1807-1821.
  • Luo, X, Guo, L, Zhang, L, Hu, Y, Shang, D, Ji, D, Bioinformatics analysis of microarray profiling identifies the mechanism of focal adhesion kinase signalling pathway in proliferation and apoptosis of breast cancer cells modulated by green tea polyphenol epigallocatechin 3-gallate. The Journal of Pharmacy and Pharmacology, 2018, 70(12), 1606–1618.
  • Sen, T, Dutta, A, Chatterjee, A, Epigallocatechin-3-gallate (EGCG) downregulates gelatinase-B (MMP-9) by involvement of FAK/ERK/NFkappaB and AP-1 in the human breast cancer cell line MDA-MB-231, Anti-cancer Drugs, 2010, 21(6), 632–644.
  • Khan, N, Afaq, F, Saleem, M, Ahmad, N, Mukhtar, H, Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate, Cancer Research, 2006, 66(5), 2500–2505.
  • Bettuzzi, S, Brausi, M, Rizzi, F, Castagnetti, G, Peracchia, G, Corti, A, Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: a preliminary report from a one-year proof-of-principle study, Cancer Research, 2006, 66(2), 1234–1240.
  • Chen, J, Song, H, Protective potential of epigallocatechin-3-gallate against benign prostatic hyperplasia in metabolic syndrome rats, Environmental Toxicology and Pharmacology, 2016, 45, 315–320.
  • Ganguly, K.K, Sen, T, Pal, S, Biswas, J, Chatterjee, A, Studies on focal adhesion kinase in human breast cancer cell MDA-MB-231, Advances in Biological Chemistry, 2012, 2, 29–42.
  • Chan, C.M, Huang, J.H, Chiang, H.S, Wu, W.B, Lin, H.H, Hong, J.Y, Hung, C.F, Effects of (−)-epigallocatechin gallate on RPE cell migration and adhesion, Molecular Vision, 2010, 16, 586-595.
  • Sajadimajd, S, Bahramsoltani, R, et al., Advances on Natural Polyphenols as Anticancer Agents for Skin Cancer, Pharmacological Research, 2020, 151, 104584.
  • Zhang, C.H, Wang, J.X, Cai, M.L, Shao, R, Liu, H, Zhao, W.L, The roles and mechanisms of G3BP1 in tumour promotion, Journal of Drug Targeting, 2019, 27(3), 300-305.
  • Hwang, Y.S, Park, K.K, Chung, W.Y, Epigallocatechin-3 gallate inhibits cancer invasion by repressing functional invadopodia formation in oral squamous cell carcinoma, European Journal of Pharmacology, 2013, 715, 286-295.
  • Tsujimura, A, Fukuhara, S, et al., Histologic evaluation of human benign prostatic hyperplasia treated by dutasteride: a study by xenograft model with improved severe combined immunodeficient mice, Urology, 2015, 85(1), 274.e1–274.e8.
  • Vu, H.A, Beppu, Y, et al., Green tea epigallocatechin gallate exhibits anticancer effect in human pancreatic carcinoma cells via the inhibition of both focal adhesion kinase and insulin-like growth factor-I receptor, Journal of Biomedicine & Biotechnology, 2010, 2010, 290516.
  • Wang, S.I, Mukhtar, H, Gene expression profile in human prostate LNCaP cancer cells by (2) epigallocatechin-3-gallate, Cancer Letters, 2002, 182, 43–51.
  • Okabe, S, Fujimoto, N, Sueoka, N, Suganuma, M, Fujiki, H, Modulation of gene expression by (–)-epigallocatechin gallate in PC-9 cells using a cDNA expression array, Biological and Pharmaceutical Bulletin, 2001, 24(8), 883–886.
  • Ahn, W.S, Huh, S.W, et al., A major constituent of green tea, EGCG, inhibits the growth of a human cervical cancer cell line, CaSki cells, through apoptosis, G (1) arrest, and regulation of gene expression, DNA Cell Biology, 2003, 22(3), 217–224.
  • Sartipp our, M.R, Heber, D, et al., cDNA microarray analysis of endothelial cells in response to green tea reveals a suppressive phenotype, International Journal of Oncology, 2004, 25(1), 193-202.
  • Guo, S, Yang, S, Taylor, C, Sonenshein, G.E, Green tea polyphenol epigallocatechin-3 gallate (EGCG) affects gene expression of breast cancer cells transformed by the carcinogen 7,12-dimethylbenz[a]anthracene, The Journal of Nutrition, 2005, 135, 2978S–2986S.
  • Murphy, J.M, Jeong, K, et al., FAK and Pyk2 activity promote TNF-α and IL-1β-mediated pro-inflammatory gene expression and vascular inflammation, Scientific Reports, 2019, 9, 7617.
  • Hoffmann, E, Breiholz, O.D, Holtmann, H, Kracht, M, Multiple control of interleukin-8 gene expression, Journal of Leukocyte Biology, 2002, 72, 847-855.
  • Hsu, A, Bruno, R.S, et al., Dietary soy and tea mitigate chronic inflammation and prostate cancer via NFκB pathway in the Noble rat model, The Journal of Nutritional Biochemistry, 2011, 22(5), 502-510.
  • Baloğlu M, Özkorkmaz E.G, Menisküs Yırtığı Hastalarının Sinoviyal Hücrelerinde Matriks Metalloprotein-2 ve NFκB Protein Ekspresyonu, Celal Bayar University-Health Science Institute Journal, 2019, 6(4), 209-214.
  • Cicero, A.F, Allkanjari, O, et al., Nutraceutical treatment and prevention of benign prostatic hyperplasia and prostate cancer, Archivio Italiano di Urologia e Andrologia, 2019, 91(3), 139-152.
There are 41 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Araştırma Makalesi
Authors

Burcu Erbaykent Tepedelen 0000-0002-9565-6349

Project Number 113S700
Publication Date June 30, 2021
Published in Issue Year 2021 Volume: 8 Issue: 2

Cite

APA Erbaykent Tepedelen, B. (2021). The Effect Of Epigallocatechin-3-Gallate On Transcriptional Regulation Of Migration And Inflammation Related Genes In Benign Prostate Hyperplasia Cells. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 8(2), 323-330. https://doi.org/10.34087/cbusbed.831854
AMA Erbaykent Tepedelen B. The Effect Of Epigallocatechin-3-Gallate On Transcriptional Regulation Of Migration And Inflammation Related Genes In Benign Prostate Hyperplasia Cells. CBU-SBED: Celal Bayar University-Health Sciences Institute Journal. June 2021;8(2):323-330. doi:10.34087/cbusbed.831854
Chicago Erbaykent Tepedelen, Burcu. “The Effect Of Epigallocatechin-3-Gallate On Transcriptional Regulation Of Migration And Inflammation Related Genes In Benign Prostate Hyperplasia Cells”. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 8, no. 2 (June 2021): 323-30. https://doi.org/10.34087/cbusbed.831854.
EndNote Erbaykent Tepedelen B (June 1, 2021) The Effect Of Epigallocatechin-3-Gallate On Transcriptional Regulation Of Migration And Inflammation Related Genes In Benign Prostate Hyperplasia Cells. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 8 2 323–330.
IEEE B. Erbaykent Tepedelen, “The Effect Of Epigallocatechin-3-Gallate On Transcriptional Regulation Of Migration And Inflammation Related Genes In Benign Prostate Hyperplasia Cells”, CBU-SBED: Celal Bayar University-Health Sciences Institute Journal, vol. 8, no. 2, pp. 323–330, 2021, doi: 10.34087/cbusbed.831854.
ISNAD Erbaykent Tepedelen, Burcu. “The Effect Of Epigallocatechin-3-Gallate On Transcriptional Regulation Of Migration And Inflammation Related Genes In Benign Prostate Hyperplasia Cells”. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 8/2 (June 2021), 323-330. https://doi.org/10.34087/cbusbed.831854.
JAMA Erbaykent Tepedelen B. The Effect Of Epigallocatechin-3-Gallate On Transcriptional Regulation Of Migration And Inflammation Related Genes In Benign Prostate Hyperplasia Cells. CBU-SBED: Celal Bayar University-Health Sciences Institute Journal. 2021;8:323–330.
MLA Erbaykent Tepedelen, Burcu. “The Effect Of Epigallocatechin-3-Gallate On Transcriptional Regulation Of Migration And Inflammation Related Genes In Benign Prostate Hyperplasia Cells”. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, vol. 8, no. 2, 2021, pp. 323-30, doi:10.34087/cbusbed.831854.
Vancouver Erbaykent Tepedelen B. The Effect Of Epigallocatechin-3-Gallate On Transcriptional Regulation Of Migration And Inflammation Related Genes In Benign Prostate Hyperplasia Cells. CBU-SBED: Celal Bayar University-Health Sciences Institute Journal. 2021;8(2):323-30.