Research Article
BibTex RIS Cite

Innovative Nanofibrous Air Filters: Advancing Air Quality and Health Protection

Year 2024, , 29 - 40, 30.06.2024
https://doi.org/10.62816/cevder.1491367

Abstract

Air pollution is a significant global health concern, causing respiratory diseases, cardiovascular disorders, and various cancers. The increasing population, industrial activities, fuel emissions, and construction activities contribute to the formation of particulate matter, leading to air pollution. The inhalation of fine particulate matter (PM2.5) and various toxic gases substantially exacerbates these health risks. Traditional air filtration systems, while relatively effective at capturing larger particles, fall short in capturing nanoscale pollutants. To address these deficiencies, nanofibrous air filters have emerged as a significant innovation. Due to their large surface area and high porosity, nanofibrous filters can effectively capture smaller particles and harmful gases. Research has demonstrated that nanofibrous filters exhibit high efficiency in filtering PM2.5 and smaller particles, as well as bacteria, and viruses. Furthermore, the long-term use of these filters presents a significant potential to reduce health risks associated with air pollution. This study emphasizes the critical importance of developing and implementing nanofibrous filter technology and the innovative research in this field to improve air quality and protect public health. The widespread adoption of this technology is viewed as an effective strategy to mitigate the adverse health effects of air pollution and create healthier living environments. In this context, the study presents insights into the current and future applications of nanofibrous air filters.

References

  • Barhate RS., Ramakrishna S. (2007). Nanofibrous filtering media: Filtration problems and solutions from tiny materials, Journal of Membrane Science, 296(1), 1–8. https://doi.org/10.1016/j.memsci.2007.03.038
  • Bui TT., Shin MK., Jee SY., Long DX., Hong J., Kim MG. (2022). Ferroelectric PVDF nanofiber membrane for high-efficiency PM0.3 air filtration with low air flow resistance, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 640, 128418. https://doi.org/10.1016/j.colsurfa.2022.128418
  • Chuang YH., Hong GB., Chang CT. (2014). Study on particulates and volatile organic compounds removal with TiO 2 nonwoven filter prepared by electrospinning, Journal of the Air & Waste Management Association, 64(6), 738–742. https://doi.org/10.1080/10962247.2014.889614
  • Givehchi R., Li Q., Tan Z. (2016). Quality factors of PVA nanofibrous filters for airborne particles in the size range of 10–125 nm, Fuel, 181, 1273–1280. https://doi.org/10.1016/j.fuel.2015.12.010
  • Gungor M., Selcuk S., Toptas A., Kilic A. (2022). Aerosol Filtration Performance of Solution Blown PA6 Webs with Bimodal Fiber Distribution, ACS Omega, 7(50), 46602–46612. https://doi.org/10.1021/acsomega.2c05449
  • Han S., Kim J., Ko SH. (2021). Advances in air filtration technologies: Structure-based and interaction-based approaches, Materials Today Advances, 9, 100134. https://doi.org/10.1016/j.mtadv.2021.100134
  • Han W., Xie S., Sun X., Wang X., Yan Z. (2017). Optimization of airflow field via solution blowing for chitosan/PEO nanofiber formation, Fibers and Polymers, 18(8), 1554–1560. https://doi.org/10.1007/s12221-017-7213-9
  • Kilic A., Shim E., Pourdeyhimi B. (2015). Electrostatic Capture Efficiency Enhancement of Polypropylene Electret Filters with Barium Titanate, Aerosol Science and Technology, 49(8), 666–673. https://doi.org/10.1080/02786826.2015.1061649
  • Kumar P., Singh AB., Arora T., Singh S., Singh R. (2023). Critical review on emerging health effects associated with the indoor air quality and its sustainable management, Science of The Total Environment, 872, 162163. https://doi.org/10.1016/j.scitotenv.2023.162163
  • Kumar S., Kumar R. (2012). Air Quality: Monitoring and Modeling. BoD – Books on Demand.
  • Leung WWF., Sun Q. (2020). Electrostatic charged nanofiber filter for filtering airborne novel coronavirus (COVID-19) and nano-aerosols, Separation and Purification Technology, 250, 116886. https://doi.org/10.1016/j.seppur.2020.116886
  • Leung WWF., Choy HF. (2018). Transition from depth to surface filtration for a low-skin effect filter subject to continuous loading of nano-aerosols, Separation and Purification Technology, 190, 202–210. https://doi.org/10.1016/j.seppur.2017.08.060
  • Li Y., Chen Q., Zhao H., Wang L., Tao R. (2015). Variations in PM10, PM2.5 and PM1.0 in an Urban Area of the Sichuan Basin and Their Relation to Meteorological Factors, Atmosphere, 6(1), Article 1. https://doi.org/10.3390/atmos6010150
  • Li Y., Lu R., Li W., Xie Z., Song Y. (2017). Concentrations and size distributions of viable bioaerosols under various weather conditions in a typical semi-arid city of Northwest China, Journal of Aerosol Science, 106, 83–92. https://doi.org/10.1016/j.jaerosci.2017.01.007
  • Lin S., Fu X., Luo M., Zhong WH. (2022). Tailoring bimodal protein fabrics for enhanced air filtration performance, Separation and Purification Technology, 290, 120913. https://doi.org/10.1016/j.seppur.2022.120913
  • Maurya R. (2019, December 27). Are PM1 Particles More Dangerous than We Think? H2S Media. https://www.how2shout.com/news/are-pm1-particles-are-more-dangerous-than-we-think.html
  • Moon KW., Huh EH., Jeong HC. (2014). Seasonal evaluation of bioaerosols from indoor air of residential apartments within the metropolitan area in South Korea, Environmental Monitoring and Assessment, 186(4), 2111–2120. https://doi.org/10.1007/s10661-013-3521-8
  • Năstase G., Șerban A., Năstase AF., Dragomir G., Brezeanu AI. (2018). Air quality, primary air pollutants and ambient concentrations inventory for Romania, Atmospheric Environment, 184, 292–303. https://doi.org/10.1016/j.atmosenv.2018.04.034
  • Öztürk S., Gerçek D., Güven İT., Gaga E., Üzmez ÖÖ., Ci̇van M. (2021). Kocaeli İzmit İlçesi’nde Partikül Madde (PM2.5) Konsantrasyon Seviyeleri, Mekânsal ve Mevsimsel Değerlendirilmesi, Mühendislik Bilimleri ve Tasarım Dergisi, 9(3), Article 3. https://doi.org/10.21923/jesd.888896
  • Pichatwatana K., Wang F., Roaf S., Anunnathapong M. (2017). An integrative approach for indoor environment quality assessment of large glazed air-conditioned airport terminal in the tropics, Energy and Buildings, 148, 37–55. https://doi.org/10.1016/j.enbuild.2017.05.007
  • Ravindra Mittal AK., Van Grieken R. (2001). Health Risk Assessment of Urban Suspended Particulate Matter with Special Reference to Polycyclic Aromatic Hydrocarbons: A Review, Reviews on Environmental Health, 16(3). https://doi.org/10.1515/REVEH.2001.16.3.169
  • Robert B., Nallathambi G. (2020). A concise review on electrospun nanofibres/nanonets for filtration of gaseous and solid constituents (PM2.5) from polluted air, Colloid and Interface Science Communications, 37, 100275. https://doi.org/10.1016/j.colcom.2020.100275
  • Roser M. (2023). Data review: How many people die from air pollution? Our World in Data. https://ourworldindata.org/data-review-air-pollution-deaths
  • Rouf Z., Dar IY., Javaid M., Dar MY., Jehangir A. (2022). Volatile Organic Compounds Emission from Building Sector and Its Adverse Effects on Human Health, In J. A. Malik & S. Marathe (Eds.), Ecological and Health Effects of Building Materials (pp. 67–86). Springer International Publishing. https://doi.org/10.1007/978-3-030-76073-1_5
  • Satish U., Mendell MJ., Shekhar K., Hotchi T., Sullivan D., Streufert S., Fisk WJ. (2012). Is CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2 Concentrations on Human Decision-Making Performance, Environmental Health Perspectives, 120(12), 1671–1677. https://doi.org/10.1289/ehp.1104789
  • Schroth T. (1996). New HEPA/ULPA filters for clean-room technology, Filtration & Separation, 33(3), 245–244. https://doi.org/10.1016/S0015-1882(97)84285-1
  • Soltani I., Macosko CW. (2018). Influence of rheology and surface properties on morphology of nanofibers derived from islands-in-the-sea meltblown nonwovens, Polymer, 145, 21–30. https://doi.org/10.1016/j.polymer.2018.04.051
  • Taneja A., Saini R., Masih A. (2008). Indoor Air Quality of Houses Located in the Urban Environment of Agra, India, Annals of the New York Academy of Sciences, 1140(1), 228–245. https://doi.org/10.1196/annals.1454.033
  • Tang M., Hu J., Liang Y., Pui DY. (2017). Pressure drop, penetration and quality factor of filter paper containing nanofibers, Textile Research Journal, 87(4), 498–508. https://doi.org/10.1177/0040517516631318
  • Tayyab M., Wang J., Wang J., Maksutoglu M., Yu H., Sun G., Yildiz F., Eginligil M., Huang W. (2020). Enhanced output in polyvinylidene fluoride nanofibers based triboelectric nanogenerator by using printer ink as nano-fillers, Nano Energy, 77, 105178. https://doi.org/10.1016/j.nanoen.2020.105178
  • EPA (1997). The Incidence and Severity of Sediment Contamination in Surface Waters of the United States: National sediment quality survey, Office of Science and Technology, U.S. Environmental Protection Agency.
  • Toptas A., Calisir MD., Gungor M., Kilic A. (2024). Enhancing filtration performance of submicron particle filter media through bimodal structural design, Polymer Engineering & Science, 64(2), 901–912. https://doi.org/10.1002/pen.26593
  • Toptaş A., Çalışır MD., Kılıç A. (2023). Production of Ultrafine PVDF Nanofiber-/Nanonet-Based Air Filters via the Electroblowing Technique by Employing PEG as a Pore-Forming Agent, ACS Omega, 8(41), 38557–38565. https://doi.org/10.1021/acsomega.3c05509
  • Vijayan VK., Paramesh H., Salvi SS., Dalal AAK. (2015). Enhancing indoor air quality –The air filter advantage, Lung India : Official Organ of Indian Chest Society, 32(5), 473–479. https://doi.org/10.4103/0970-2113.164174
  • Wang J., Zhao W., Wang B., Pei G., Li C. (2017). Multilevel-layer-structured polyamide 6/poly(trimethylene terephthalate) nanofibrous membranes for low-pressure air filtration, Journal of Applied Polymer Science, 134(16). https://doi.org/10.1002/app.44716
  • Wargocki P., Wyon DP. (2013). Providing better thermal and air quality conditions in school classrooms would be cost-effective, Building and Environment, 59, 581–589. https://doi.org/10.1016/j.buildenv.2012.10.007
  • Yadav I., Devi N. (2018). Biomass Burning, Regional Air Quality, and Climate Change. https://doi.org/10.1016/B978-0-12-409548-9.11022-X
  • Yang Z., Song Q., Li J., Zhang Y., Yuan XC., Wang W., Yu Q. (2021). Air pollution and mental health: The moderator effect of health behaviors, Environmental Research Letters, 16(4), 044005. https://doi.org/10.1088/1748-9326/abe88f
  • Yilmaz ND., Banks-Lee P., Powell NB., Michielsen S. (2011). Effects of porosity, fiber size, and layering sequence on sound absorption performance of needle-punched nonwovens, Journal of Applied Polymer Science, 121(5), 3056–3069. https://doi.org/10.1002/app.33312
  • Zhang H., Liu N., Zeng Q., Liu J., Zhang X., Ge M., Zhang W., Li S., Fu Y., Zhang Y. (2020). Design of Polypropylene Electret Melt Blown Nonwovens with Superior Filtration Efficiency Stability through Thermally Stimulated Charging, Polymers, 12(10), Article 10. https://doi.org/10.3390/polym12102341
  • Zhang Y. (2004). Indoor Air Quality Engineering. CRC Press.

Yenilikçi Nanolifli Hava Filtreleri: Hava Kalitesinin Geliştirilmesi ve Sağlığın Korunması

Year 2024, , 29 - 40, 30.06.2024
https://doi.org/10.62816/cevder.1491367

Abstract

Hava kirliliği, küresel ölçekte solunum yolu hastalıkları, kardiyovasküler rahatsızlıklar ve kanser türleri gibi ciddi sağlık sorunlarına neden olmaktadır. Artan nüfusa, endüstriyel faaliyetlere, yakıt emisyonlarına ve inşaat faaliyetlerine bağlı olarak oluşan partikül maddeler hava kirliliğine neden olmaktadır. Özellikle, ince partikül maddelerin (PM2.5) ve çeşitli toksik gazların inhalasyonu, bu sağlık risklerini önemli ölçüde artırmaktadır. Geleneksel hava filtreleme sistemleri, büyük partikülleri yakalama konusunda nispeten etkili olsalar da nano boyutta kirleticilerin tutulmasında yetersiz kalmaktadır. Bu eksiklikleri gidermek amacıyla, nanolifli hava filtreleri önemli bir yenilik olarak ortaya çıkmıştır. Nanolifli filtreler, geniş yüzey alanları ve yüksek porozite özellikleri sayesinde daha küçük partikülleri ve zararlı gazları etkin bir şekilde yakalayabilmektedir. Yapılan araştırmalar, nanolifli filtrelerin PM2.5 ve daha küçük partiküllerin yanı sıra çeşitli toksik gazların, bakteri ve virüslerin filtrasyonunda yüksek verimlilik gösterdiğini doğrulamaktadır. Ayrıca, bu filtrelerin uzun vadeli kullanımı, hava kirliliğine bağlı sağlık risklerini azaltmada önemli bir potansiyel sunmaktadır. Bu çalışma nanolifli filtre teknolojisinin ve bu alanda yapılan yenilikçi çalışmaların geliştirilmesi ve uygulanmasının, hava kalitesini iyileştirme ve halk sağlığını koruma açısından kritik önem taşıdığını vurgulamaktadır. Bu teknolojinin yaygınlaştırılması, hava kirliliğinin olumsuz sağlık etkilerini hafifletmek ve daha sağlıklı yaşam ortamları oluşturmak için etkili bir strateji olarak değerlendirilmektedir. Bu bağlamda, nanolifli hava filtrelerinin mevcut ve gelecekteki uygulamaları için çalışmalar sunulmaktadır.

References

  • Barhate RS., Ramakrishna S. (2007). Nanofibrous filtering media: Filtration problems and solutions from tiny materials, Journal of Membrane Science, 296(1), 1–8. https://doi.org/10.1016/j.memsci.2007.03.038
  • Bui TT., Shin MK., Jee SY., Long DX., Hong J., Kim MG. (2022). Ferroelectric PVDF nanofiber membrane for high-efficiency PM0.3 air filtration with low air flow resistance, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 640, 128418. https://doi.org/10.1016/j.colsurfa.2022.128418
  • Chuang YH., Hong GB., Chang CT. (2014). Study on particulates and volatile organic compounds removal with TiO 2 nonwoven filter prepared by electrospinning, Journal of the Air & Waste Management Association, 64(6), 738–742. https://doi.org/10.1080/10962247.2014.889614
  • Givehchi R., Li Q., Tan Z. (2016). Quality factors of PVA nanofibrous filters for airborne particles in the size range of 10–125 nm, Fuel, 181, 1273–1280. https://doi.org/10.1016/j.fuel.2015.12.010
  • Gungor M., Selcuk S., Toptas A., Kilic A. (2022). Aerosol Filtration Performance of Solution Blown PA6 Webs with Bimodal Fiber Distribution, ACS Omega, 7(50), 46602–46612. https://doi.org/10.1021/acsomega.2c05449
  • Han S., Kim J., Ko SH. (2021). Advances in air filtration technologies: Structure-based and interaction-based approaches, Materials Today Advances, 9, 100134. https://doi.org/10.1016/j.mtadv.2021.100134
  • Han W., Xie S., Sun X., Wang X., Yan Z. (2017). Optimization of airflow field via solution blowing for chitosan/PEO nanofiber formation, Fibers and Polymers, 18(8), 1554–1560. https://doi.org/10.1007/s12221-017-7213-9
  • Kilic A., Shim E., Pourdeyhimi B. (2015). Electrostatic Capture Efficiency Enhancement of Polypropylene Electret Filters with Barium Titanate, Aerosol Science and Technology, 49(8), 666–673. https://doi.org/10.1080/02786826.2015.1061649
  • Kumar P., Singh AB., Arora T., Singh S., Singh R. (2023). Critical review on emerging health effects associated with the indoor air quality and its sustainable management, Science of The Total Environment, 872, 162163. https://doi.org/10.1016/j.scitotenv.2023.162163
  • Kumar S., Kumar R. (2012). Air Quality: Monitoring and Modeling. BoD – Books on Demand.
  • Leung WWF., Sun Q. (2020). Electrostatic charged nanofiber filter for filtering airborne novel coronavirus (COVID-19) and nano-aerosols, Separation and Purification Technology, 250, 116886. https://doi.org/10.1016/j.seppur.2020.116886
  • Leung WWF., Choy HF. (2018). Transition from depth to surface filtration for a low-skin effect filter subject to continuous loading of nano-aerosols, Separation and Purification Technology, 190, 202–210. https://doi.org/10.1016/j.seppur.2017.08.060
  • Li Y., Chen Q., Zhao H., Wang L., Tao R. (2015). Variations in PM10, PM2.5 and PM1.0 in an Urban Area of the Sichuan Basin and Their Relation to Meteorological Factors, Atmosphere, 6(1), Article 1. https://doi.org/10.3390/atmos6010150
  • Li Y., Lu R., Li W., Xie Z., Song Y. (2017). Concentrations and size distributions of viable bioaerosols under various weather conditions in a typical semi-arid city of Northwest China, Journal of Aerosol Science, 106, 83–92. https://doi.org/10.1016/j.jaerosci.2017.01.007
  • Lin S., Fu X., Luo M., Zhong WH. (2022). Tailoring bimodal protein fabrics for enhanced air filtration performance, Separation and Purification Technology, 290, 120913. https://doi.org/10.1016/j.seppur.2022.120913
  • Maurya R. (2019, December 27). Are PM1 Particles More Dangerous than We Think? H2S Media. https://www.how2shout.com/news/are-pm1-particles-are-more-dangerous-than-we-think.html
  • Moon KW., Huh EH., Jeong HC. (2014). Seasonal evaluation of bioaerosols from indoor air of residential apartments within the metropolitan area in South Korea, Environmental Monitoring and Assessment, 186(4), 2111–2120. https://doi.org/10.1007/s10661-013-3521-8
  • Năstase G., Șerban A., Năstase AF., Dragomir G., Brezeanu AI. (2018). Air quality, primary air pollutants and ambient concentrations inventory for Romania, Atmospheric Environment, 184, 292–303. https://doi.org/10.1016/j.atmosenv.2018.04.034
  • Öztürk S., Gerçek D., Güven İT., Gaga E., Üzmez ÖÖ., Ci̇van M. (2021). Kocaeli İzmit İlçesi’nde Partikül Madde (PM2.5) Konsantrasyon Seviyeleri, Mekânsal ve Mevsimsel Değerlendirilmesi, Mühendislik Bilimleri ve Tasarım Dergisi, 9(3), Article 3. https://doi.org/10.21923/jesd.888896
  • Pichatwatana K., Wang F., Roaf S., Anunnathapong M. (2017). An integrative approach for indoor environment quality assessment of large glazed air-conditioned airport terminal in the tropics, Energy and Buildings, 148, 37–55. https://doi.org/10.1016/j.enbuild.2017.05.007
  • Ravindra Mittal AK., Van Grieken R. (2001). Health Risk Assessment of Urban Suspended Particulate Matter with Special Reference to Polycyclic Aromatic Hydrocarbons: A Review, Reviews on Environmental Health, 16(3). https://doi.org/10.1515/REVEH.2001.16.3.169
  • Robert B., Nallathambi G. (2020). A concise review on electrospun nanofibres/nanonets for filtration of gaseous and solid constituents (PM2.5) from polluted air, Colloid and Interface Science Communications, 37, 100275. https://doi.org/10.1016/j.colcom.2020.100275
  • Roser M. (2023). Data review: How many people die from air pollution? Our World in Data. https://ourworldindata.org/data-review-air-pollution-deaths
  • Rouf Z., Dar IY., Javaid M., Dar MY., Jehangir A. (2022). Volatile Organic Compounds Emission from Building Sector and Its Adverse Effects on Human Health, In J. A. Malik & S. Marathe (Eds.), Ecological and Health Effects of Building Materials (pp. 67–86). Springer International Publishing. https://doi.org/10.1007/978-3-030-76073-1_5
  • Satish U., Mendell MJ., Shekhar K., Hotchi T., Sullivan D., Streufert S., Fisk WJ. (2012). Is CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2 Concentrations on Human Decision-Making Performance, Environmental Health Perspectives, 120(12), 1671–1677. https://doi.org/10.1289/ehp.1104789
  • Schroth T. (1996). New HEPA/ULPA filters for clean-room technology, Filtration & Separation, 33(3), 245–244. https://doi.org/10.1016/S0015-1882(97)84285-1
  • Soltani I., Macosko CW. (2018). Influence of rheology and surface properties on morphology of nanofibers derived from islands-in-the-sea meltblown nonwovens, Polymer, 145, 21–30. https://doi.org/10.1016/j.polymer.2018.04.051
  • Taneja A., Saini R., Masih A. (2008). Indoor Air Quality of Houses Located in the Urban Environment of Agra, India, Annals of the New York Academy of Sciences, 1140(1), 228–245. https://doi.org/10.1196/annals.1454.033
  • Tang M., Hu J., Liang Y., Pui DY. (2017). Pressure drop, penetration and quality factor of filter paper containing nanofibers, Textile Research Journal, 87(4), 498–508. https://doi.org/10.1177/0040517516631318
  • Tayyab M., Wang J., Wang J., Maksutoglu M., Yu H., Sun G., Yildiz F., Eginligil M., Huang W. (2020). Enhanced output in polyvinylidene fluoride nanofibers based triboelectric nanogenerator by using printer ink as nano-fillers, Nano Energy, 77, 105178. https://doi.org/10.1016/j.nanoen.2020.105178
  • EPA (1997). The Incidence and Severity of Sediment Contamination in Surface Waters of the United States: National sediment quality survey, Office of Science and Technology, U.S. Environmental Protection Agency.
  • Toptas A., Calisir MD., Gungor M., Kilic A. (2024). Enhancing filtration performance of submicron particle filter media through bimodal structural design, Polymer Engineering & Science, 64(2), 901–912. https://doi.org/10.1002/pen.26593
  • Toptaş A., Çalışır MD., Kılıç A. (2023). Production of Ultrafine PVDF Nanofiber-/Nanonet-Based Air Filters via the Electroblowing Technique by Employing PEG as a Pore-Forming Agent, ACS Omega, 8(41), 38557–38565. https://doi.org/10.1021/acsomega.3c05509
  • Vijayan VK., Paramesh H., Salvi SS., Dalal AAK. (2015). Enhancing indoor air quality –The air filter advantage, Lung India : Official Organ of Indian Chest Society, 32(5), 473–479. https://doi.org/10.4103/0970-2113.164174
  • Wang J., Zhao W., Wang B., Pei G., Li C. (2017). Multilevel-layer-structured polyamide 6/poly(trimethylene terephthalate) nanofibrous membranes for low-pressure air filtration, Journal of Applied Polymer Science, 134(16). https://doi.org/10.1002/app.44716
  • Wargocki P., Wyon DP. (2013). Providing better thermal and air quality conditions in school classrooms would be cost-effective, Building and Environment, 59, 581–589. https://doi.org/10.1016/j.buildenv.2012.10.007
  • Yadav I., Devi N. (2018). Biomass Burning, Regional Air Quality, and Climate Change. https://doi.org/10.1016/B978-0-12-409548-9.11022-X
  • Yang Z., Song Q., Li J., Zhang Y., Yuan XC., Wang W., Yu Q. (2021). Air pollution and mental health: The moderator effect of health behaviors, Environmental Research Letters, 16(4), 044005. https://doi.org/10.1088/1748-9326/abe88f
  • Yilmaz ND., Banks-Lee P., Powell NB., Michielsen S. (2011). Effects of porosity, fiber size, and layering sequence on sound absorption performance of needle-punched nonwovens, Journal of Applied Polymer Science, 121(5), 3056–3069. https://doi.org/10.1002/app.33312
  • Zhang H., Liu N., Zeng Q., Liu J., Zhang X., Ge M., Zhang W., Li S., Fu Y., Zhang Y. (2020). Design of Polypropylene Electret Melt Blown Nonwovens with Superior Filtration Efficiency Stability through Thermally Stimulated Charging, Polymers, 12(10), Article 10. https://doi.org/10.3390/polym12102341
  • Zhang Y. (2004). Indoor Air Quality Engineering. CRC Press.
There are 41 citations in total.

Details

Primary Language English
Subjects Pollution and Contamination (Other)
Journal Section Articles
Authors

Ali Toptaş 0000-0002-1176-0844

Publication Date June 30, 2024
Submission Date May 28, 2024
Acceptance Date June 15, 2024
Published in Issue Year 2024

Cite

APA Toptaş, A. (2024). Innovative Nanofibrous Air Filters: Advancing Air Quality and Health Protection. Sürdürülebilir Çevre Dergisi, 4(1), 29-40. https://doi.org/10.62816/cevder.1491367
AMA Toptaş A. Innovative Nanofibrous Air Filters: Advancing Air Quality and Health Protection. Çevre. June 2024;4(1):29-40. doi:10.62816/cevder.1491367
Chicago Toptaş, Ali. “Innovative Nanofibrous Air Filters: Advancing Air Quality and Health Protection”. Sürdürülebilir Çevre Dergisi 4, no. 1 (June 2024): 29-40. https://doi.org/10.62816/cevder.1491367.
EndNote Toptaş A (June 1, 2024) Innovative Nanofibrous Air Filters: Advancing Air Quality and Health Protection. Sürdürülebilir Çevre Dergisi 4 1 29–40.
IEEE A. Toptaş, “Innovative Nanofibrous Air Filters: Advancing Air Quality and Health Protection”, Çevre, vol. 4, no. 1, pp. 29–40, 2024, doi: 10.62816/cevder.1491367.
ISNAD Toptaş, Ali. “Innovative Nanofibrous Air Filters: Advancing Air Quality and Health Protection”. Sürdürülebilir Çevre Dergisi 4/1 (June 2024), 29-40. https://doi.org/10.62816/cevder.1491367.
JAMA Toptaş A. Innovative Nanofibrous Air Filters: Advancing Air Quality and Health Protection. Çevre. 2024;4:29–40.
MLA Toptaş, Ali. “Innovative Nanofibrous Air Filters: Advancing Air Quality and Health Protection”. Sürdürülebilir Çevre Dergisi, vol. 4, no. 1, 2024, pp. 29-40, doi:10.62816/cevder.1491367.
Vancouver Toptaş A. Innovative Nanofibrous Air Filters: Advancing Air Quality and Health Protection. Çevre. 2024;4(1):29-40.