Conference Paper
BibTex RIS Cite

Yeşil Duvarların CO2 Uzaklaştırma Kabiliyetinin Mimari Tasarım Parametresi Olarak Kullanılması

Year 2022, Volume: 2 Issue: 2, 66 - 75, 30.12.2022

Abstract

Günümüz mimari tasarımlarında işlevsellik ve estetik unsurların yanında tasarımın doğal çevreye etkileri de önemli bir unsur haline gelmiştir. Tasarımın doğal çevreye olan etkilerinin belirlenmesinde kullanılabilecek en önemli parametrelerden biri karbon ayak izidir. Karbon izinin azaltılması konusunda küresel ölçekte koyulan hedeflerden sonra, mimarlar yaptıkları tasarımlarda, karbon ayak izini azaltıcı unsurları da kullanmaya başlamıştır. Bu çalışmada küresel ısınmaya neden olan emisyonların azaltılmasında kullanılabilecek dinamik bir yöntem olan yeşil duvarların, bir mimari tasarımın karbon ayak izini azaltmada ki etkileri incelenmiştir. Bu amaçla mesken olarak kullanılacak bir model bina tasarlanmış ve karbon ayak izi Tier 1 yaklaşımı ile belirlenmiştir. Model binanın yıllık karbon ayak izi 32521 kgCO2-eq olarak hesaplanmıştır. Karbon ayak izi içerisinde en yüksek oran doğalgaz tüketimine aittir (16665 kgCO2-eq/yıl). Bina tasarımında bulunan yeşil duvar sisteminin, farklı bitki türlerinin kullanılması durumunda tutacağı sera gazı emisyon miktarları (CO2-eq) incelemesinde ise, en yüksek değer 1753 kg CO2-eq /m2 yıl ile Z. matrella bitkisinde elde edilmiştir. Tüm bitki türlerinin ortak kullanılması ile tutulabilecek CO2-eq miktarı ise 1147 kg CO2-eq / m2 yıl bulunmuştur. Çalışmada ulaşılan sonuçlar, yeşil duvarların ısı yalıtımı ve gri su atımı konularındaki ilave faydaları ile birlikte değerlendirildiğinde, mimari tasarımlarda karbon ayak izini azaltmak için kullanılabilecek önemli bir paremetre olduğu söylenebilir.

References

  • Atmaca A., Atmaca N. (2022). Carbon footprint assessment of residential buildings, a review and a case study in Turkey. Journal of Cleaner Production, 340, 130691.
  • Cheng CY., Cheung KKS., Chu LM. (2010). Thermal performance of a vegetated cladding system on facade walls. Build. Environ., 45, 1779-1787.
  • Dede OH., Mercan N., Ozer H., Dede G., Pekarchuk O., Mercan B. (2021). Thermal insulation characteristics of green wall systems using different growing media, Energy and Buildings, 240, 110872.
  • Dede G., Pekarcuk O., Ozer H., Dede OH. (2019). Alternative Growing Media Components For Green Wall Designs in Terms of Lightweight. 2nd International Congress on Engineering and Achitecture, Marmaris /Turkey, 374-383.
  • Haksevenler BHG., Onat GNC., Akpinar B., Bedel T. (2020). Determination of Carbon Footprint for Local Administrations: A Case Study for Ümraniye Municipality. Journal of Natural Hazards and Environment, 6(2), 319-333.
  • Intergovernmental Panel on Climate Change (2006). IPCC Guidelines for National Greenhouse Gas Inventories: Vol. 2: Energy (stationary, mobile, and fugitives), Vol. 3: Industry, Geneva, Switzerland.
  • Lai JHK. (2014). Carbon footprints of hotels: Analysis of three archetypes in Hong Kong. Sustainable Cities and Society, 14, 334–341.
  • Lapenangga A., Satwiko P. (2016). Carbon footprint analysis of a t-45 house in Kupang. Journal of Architecture and Built Environment, 43, 77-84.
  • Marchi M., Pulselli RM., Marchettini N., Pulselli FM. (2015). Carbon dioxide sequestration model of a vertical greenery system. Ecological Modelling, 306, 46–56.
  • Turkish Natural Gas Distributors Association (GAZBIR) (2021). Natural gas Distribution Industry Report, p. 25.
  • Ozen HA. (2022). Effect of the lockdown on greenhouse gas emissions during the COVID-19 pandemic. NOHU J. Eng. Sci., 11(1), 039-047.
  • Pan L., Chu LM. (2016). Energy saving potential and life cycle environmental impacts of a vertical greenery system in Hong Kong: A case study. Build. Environ., 96, 293-300.
  • Republic of Turkey Ministry of Energy and Natural Resources (2022). Turkey Electricity Generation and Electricity Consumption Point Emission Factors Data Sheet.
  • Susca T., Gaffin SR., Dell’Osso GR. (2011). Positive effects of vegetation: urban heat island and green roofs. Environ. Pollut, 26, 2119-2126.
  • The Istanbul Metropolitan Municipality (2021). Istanbul climate change action plan.
  • Turkey's Energy Market Regulatory Board (2021). Electricity Market Development Report:, p. 45-48.
  • Turkey Statistical Institute data (2021), Number:37197.
  • Turkey Statistical Institute data (2021). Number and population of municipalities served by waste services and amount of waste collected.
  • Turkey's Informative Inventory Report (IIR2021). Republic of Turkey ministry of environmental urban and climate change, p. 17.
  • WATER UK (2007). Sustainability Indicators 2006/07.
  • World Resources Institute & World Business Council for Sustainable Development (2004). The greenhouse gas protocol: A corporate accounting and reporting standard (revised edition). World Business Council for Sustainable Development.

Using The CO2 Removal Capability of Green Walls as Architectural Design Parameter

Year 2022, Volume: 2 Issue: 2, 66 - 75, 30.12.2022

Abstract

Nowadays architectural designs, besides the functionality and aesthetic elements, the effects of design on the natural environment have become an important element. One of the most critical parameters that can be used in determining the effects of design on the natural environment is the carbon footprint. After the goals were set on a global scale in terms of reducing carbon footprint, architects started to use carbon footprint reducing elements in their designs. In this study, the effects of green walls, a dynamic method that can be used to reduce emissions that cause global warming, on reducing the carbon footprint of an architectural design were examined. For this purpose, a model building to be used as a residence was designed, and its carbon footprint was determined with the Tier 1 approach. The annual carbon footprint of the model building was calculated as 32521 kgCO2-eq. The highest rate of carbon footprint belongs to natural gas consumption (16665 kg CO2-eq/ year). In the analysis of the greenhouse gas emissions (CO2-eq) that the green wall system in the building design will uptake if different plant species are used, the highest value was obtained in the Z. matrella plant with 1753 kgCO2-eq/m2 year. The amount of CO2-eq that can be uptaken by using all plant species together was found to be 1147 kgCO2-eq/m2 year. When the results obtained in the study are evaluated together with the additional benefits of green walls in thermal insulation and gray water treatment, it can be said that it is an important parameter that can be used to reduce carbon footprint in architectural designs.

References

  • Atmaca A., Atmaca N. (2022). Carbon footprint assessment of residential buildings, a review and a case study in Turkey. Journal of Cleaner Production, 340, 130691.
  • Cheng CY., Cheung KKS., Chu LM. (2010). Thermal performance of a vegetated cladding system on facade walls. Build. Environ., 45, 1779-1787.
  • Dede OH., Mercan N., Ozer H., Dede G., Pekarchuk O., Mercan B. (2021). Thermal insulation characteristics of green wall systems using different growing media, Energy and Buildings, 240, 110872.
  • Dede G., Pekarcuk O., Ozer H., Dede OH. (2019). Alternative Growing Media Components For Green Wall Designs in Terms of Lightweight. 2nd International Congress on Engineering and Achitecture, Marmaris /Turkey, 374-383.
  • Haksevenler BHG., Onat GNC., Akpinar B., Bedel T. (2020). Determination of Carbon Footprint for Local Administrations: A Case Study for Ümraniye Municipality. Journal of Natural Hazards and Environment, 6(2), 319-333.
  • Intergovernmental Panel on Climate Change (2006). IPCC Guidelines for National Greenhouse Gas Inventories: Vol. 2: Energy (stationary, mobile, and fugitives), Vol. 3: Industry, Geneva, Switzerland.
  • Lai JHK. (2014). Carbon footprints of hotels: Analysis of three archetypes in Hong Kong. Sustainable Cities and Society, 14, 334–341.
  • Lapenangga A., Satwiko P. (2016). Carbon footprint analysis of a t-45 house in Kupang. Journal of Architecture and Built Environment, 43, 77-84.
  • Marchi M., Pulselli RM., Marchettini N., Pulselli FM. (2015). Carbon dioxide sequestration model of a vertical greenery system. Ecological Modelling, 306, 46–56.
  • Turkish Natural Gas Distributors Association (GAZBIR) (2021). Natural gas Distribution Industry Report, p. 25.
  • Ozen HA. (2022). Effect of the lockdown on greenhouse gas emissions during the COVID-19 pandemic. NOHU J. Eng. Sci., 11(1), 039-047.
  • Pan L., Chu LM. (2016). Energy saving potential and life cycle environmental impacts of a vertical greenery system in Hong Kong: A case study. Build. Environ., 96, 293-300.
  • Republic of Turkey Ministry of Energy and Natural Resources (2022). Turkey Electricity Generation and Electricity Consumption Point Emission Factors Data Sheet.
  • Susca T., Gaffin SR., Dell’Osso GR. (2011). Positive effects of vegetation: urban heat island and green roofs. Environ. Pollut, 26, 2119-2126.
  • The Istanbul Metropolitan Municipality (2021). Istanbul climate change action plan.
  • Turkey's Energy Market Regulatory Board (2021). Electricity Market Development Report:, p. 45-48.
  • Turkey Statistical Institute data (2021), Number:37197.
  • Turkey Statistical Institute data (2021). Number and population of municipalities served by waste services and amount of waste collected.
  • Turkey's Informative Inventory Report (IIR2021). Republic of Turkey ministry of environmental urban and climate change, p. 17.
  • WATER UK (2007). Sustainability Indicators 2006/07.
  • World Resources Institute & World Business Council for Sustainable Development (2004). The greenhouse gas protocol: A corporate accounting and reporting standard (revised edition). World Business Council for Sustainable Development.
There are 21 citations in total.

Details

Primary Language English
Subjects Environmental Sciences
Journal Section Articles
Authors

Oksana Pekarchuk 0000-0002-1686-4538

Hasan Özer 0000-0003-1816-5172

Ömer Hulusi Dede 0000-0001-8574-820X

Bahadır Mert Çınar 0000-0003-1221-2759

Publication Date December 30, 2022
Submission Date December 6, 2022
Published in Issue Year 2022 Volume: 2 Issue: 2

Cite

APA Pekarchuk, O., Özer, H., Dede, Ö. H., Çınar, B. M. (2022). Using The CO2 Removal Capability of Green Walls as Architectural Design Parameter. Sürdürülebilir Çevre Dergisi, 2(2), 66-75.
AMA Pekarchuk O, Özer H, Dede ÖH, Çınar BM. Using The CO2 Removal Capability of Green Walls as Architectural Design Parameter. Çevre. December 2022;2(2):66-75.
Chicago Pekarchuk, Oksana, Hasan Özer, Ömer Hulusi Dede, and Bahadır Mert Çınar. “Using The CO2 Removal Capability of Green Walls As Architectural Design Parameter”. Sürdürülebilir Çevre Dergisi 2, no. 2 (December 2022): 66-75.
EndNote Pekarchuk O, Özer H, Dede ÖH, Çınar BM (December 1, 2022) Using The CO2 Removal Capability of Green Walls as Architectural Design Parameter. Sürdürülebilir Çevre Dergisi 2 2 66–75.
IEEE O. Pekarchuk, H. Özer, Ö. H. Dede, and B. M. Çınar, “Using The CO2 Removal Capability of Green Walls as Architectural Design Parameter”, Çevre, vol. 2, no. 2, pp. 66–75, 2022.
ISNAD Pekarchuk, Oksana et al. “Using The CO2 Removal Capability of Green Walls As Architectural Design Parameter”. Sürdürülebilir Çevre Dergisi 2/2 (December 2022), 66-75.
JAMA Pekarchuk O, Özer H, Dede ÖH, Çınar BM. Using The CO2 Removal Capability of Green Walls as Architectural Design Parameter. Çevre. 2022;2:66–75.
MLA Pekarchuk, Oksana et al. “Using The CO2 Removal Capability of Green Walls As Architectural Design Parameter”. Sürdürülebilir Çevre Dergisi, vol. 2, no. 2, 2022, pp. 66-75.
Vancouver Pekarchuk O, Özer H, Dede ÖH, Çınar BM. Using The CO2 Removal Capability of Green Walls as Architectural Design Parameter. Çevre. 2022;2(2):66-75.