Research Article
BibTex RIS Cite

Invariants of a mapping of a set to the two-dimensional Euclidean space

Year 2023, , 137 - 158, 30.03.2023
https://doi.org/10.31801/cfsuasmas.1003511

Abstract

Let $E_{2}$ be the $2$-dimensional Euclidean space and $T$ be a set such that it has at least two elements. A mapping $\alpha : T\rightarrow E_{2}$ will be called a $T$-figure in $E_{2}$. Let $O(2, R)$ be the group of all orthogonal transformations of $E_{2}$. Put $SO(2, R)=\left\{ g\in O(2, R)|detg=1\right\}$, $MO(2, R)=\left\{F:E_{2}\rightarrow E_{2}\mid Fx=gx+b, g\in O(2,R), b\in E_{2}\right\}$,
$MSO(2, R)= \left\{F\in MO(2, R)|detg=1\right\}$.
The present paper is devoted to solutions of problems of $G$-equivalence of $T$-figures in $E_{2}$ for groups $G=O(2, R), SO(2, R)$, $MO(2, R)$, $MSO(2, R)$. Complete systems of $G$-invariants of $T$-figures in $E_{2}$ for these groups are obtained. Complete systems of relations between elements of the obtained complete systems of $G$-invariants are given for these groups.

Supporting Institution

The Ministry of Innovative Development of the Republic of Uzbekistan and The Scientific and Technological Research Council of Turkey

Project Number

UT-OT-2020-2 and 119N643

Thanks

This work is supported by The Ministry of Innovative Development of the Republic of Uzbekistan (MID Uzbekistan) under Grant Number UT-OT-2020-2 and The Scientific and Technological Research Council of Turkey (T\"{U}B{\.I}TAK) under Grant Number 119N643.

References

  • Aripov, R., Khadjiev, D., The complete system of global differential and integral invariants of a curve in Euclidean geometry, Izvestiya Vuzov, Ser. Mathematics, 542 (2007), 114, http://dx.doi.org/10.3103/S1066369X07070018.
  • Berger, M., Geometry I, Springer-Verlag, Berlin, Heidelberg, 1987.
  • Dieudonne, J. A. ,Carrell, J.B. , Invariant Theory, Academic Press, New-York, London, 1971.
  • Greub, W. H. , Linear Algebra, Springer-Verlag, New York Inc., 1967.
  • İncesu, M., Gürsoy, O., LS(2)-equivalence conditions of control points and application to planar Bezier curves, New Trends in Mathematical Sciences, 5(3) (2017), 70-84., http://dx.doi.org/10.20852/ntmsci.2017.186.
  • Höfer, R., m-Point invariants of real geometries, Beitrage Algebra Geom., 40 (1999), 261-266.
  • Ören, İ., Khadjiev, D., Pekşen, Ö., Identifications of paths and curves under the plane similarity transformations and their applications to mechanics, Journal of Geometry and Physics, 151 (2020), 1-17, 103619, https://doi.org/10.1016/j.geomphys.2020.103619.
  • Khadjiev, D.,Application of the Invariant Theory to the Differential Geometry of Curves, Fan Publisher, Tashkent, 1988, [in Russian].
  • Khadjiev, D., Pekşen, Ö., The complete system of global integral and differential invariants for equi-affine curves, Differential Geometry and its Applications, 20 (2004), 167-175, https://doi.org/10.1016/j.difgeo.2003.10.005.
  • Khadjiev, D., Complete systems of differential invariants of vector fields in a Euclidean space, Turkish Journal of Mathematics, 34(2010), 543-559,https://doi.org/10.3906/mat-0809-10
  • Khadjiev, D., On invariants of immersions of an n-dimensional manifold in an n-dimensional pseudo-euclidean space, Journal of Nonlinear Mathematical Physics, 17(1) (2010), 49-70, https://doi.org/10.1142/S1402925110000799.
  • Khadjiev, D., Ören, İ., Pekşen, Ö., Generating systems of differential invariants and the theorem on existence for curves in the pseudo-Euclidean geometry, Turkish Journal of Mathematics, 37 (2013), 80-94, https://doi.org/10.3906/mat-1104-41.
  • Khadjiev, D., Göksal, Y., Applications of hyperbolic numbers to the invariant theory in two-dimensional pseudo-Euclidean space, Adv. Appl. Clifford Algebras, 26 (2016) 645-668, https://doi.org/10.1007/s00006-015-0627-9
  • Khadjiev, D., Ören, İ., Pekşen, Ö., Global invariants of paths and curves for the group of all linear similarities in the two-dimensional Euclidean space, International Journal of Geometric Methods in Modern Physics, 15(6) (2018), 1850092, https://doi.org/10.1142/S0219887818500925.
  • Khadjiev, D., Projective invariants of m-tuples in the one-dimensional projective space, Uzbek Mathematical Journal, 1 (2019) 61-73.
  • Khadjiev, D., Ayupov, Sh., Beshimov, G., Complete systems of invariant of m-tuples for fundamental groups of the two-dimensional Euclidian space, Uzbek Mathematical Journal, 1 (2020), 57-84.
  • Khadjiev, D., Bekbaev, U., Aripov, R., On equivalence of vector-valued maps, arXiv:2005.08707v1 [math GM] 13 May 2020.
  • Khadjiev, D., Ayupov, Sh., Beshimov, G., Affine invariants of a parametric figure for fundamental groups of n-dimensional affine space, Uzbek Mathematical Journal, 65(4)(2021), 27-47.
  • Mundy, J. L. , Zisserman, A., Forsyth , D.(Eds.), Applications of Invariance in Computer Vision, Springer-Verlag, Berlin, Heidelberg, New York, 1994.
  • Mumford, D., Fogarty, J., Geometric Invariant Theory, Springer-Verlag, Berlin, Heidelberg, 1994.
  • O’Rourke, J.,Computational Geometry in C , Cambridge University Press, 1997.
  • Ören, İ., Equivalence conditions of two Bezier curves in the Euclidean geometry, Iranian Journal of Science and Technology, Transactions A: Science, 42(3) (2018), 1563-1577., http://dx.doi.org/10.1007/s40995-016-0129-1.
  • Ören, İ., Invariants of m-vectors in Lorentzian geometry, International Electronic Journal of Geometry, 9(1)(2016), 38-44.
  • Pekşen, Ö., Khadjiev, D., Invariants of curves in centro-affine geometry, J. Math. Kyoto Univ., 44(3)(2004), 603-613.
  • Pekşen, Ö., Khadjiev, D., On invariants of null curves in the pseudo-Euclidean geometry, Differential Geometry and its Applications 29 (2011), 183-187, https://doi.org/10.1016/j.difgeo.2011.04.024.
  • Pekşen, Ö., Khadjiev, D., Ören, İ., Invariant parametrizations and complete systems of global invariants of curves in the pseudo-euclidean geometry, Turkish Journal of Mathematics , 36 (2012), 147-160, http://dx.doi.org/10.3906/mat-0911-145.
  • Reiss, T. H. ,Recognizing Planar Objects Using Invariant Image Features, Springer-Verlag, Berlin, Heidelberg, New York, 1993.
  • Sağıroğlu, Y., Khadjiev, D., Gözütok, U., Differential invariants of non-degenerate surfaces, Applications and Applied Mathematics, Special issue, 3 ( 2019), 35-57.
  • Sibirskii, K. S., Introduction to the Algebraic Invariants of Differential Equations, Manchester University Press, New York, 1988.
  • Springer, T. A., Invariant Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1977.
  • Weyl, H., The Classical Groups: Their Invariants and Representations, Princeton Univ. Press, Princeton, New Jersey, 1946.
Year 2023, , 137 - 158, 30.03.2023
https://doi.org/10.31801/cfsuasmas.1003511

Abstract

Project Number

UT-OT-2020-2 and 119N643

References

  • Aripov, R., Khadjiev, D., The complete system of global differential and integral invariants of a curve in Euclidean geometry, Izvestiya Vuzov, Ser. Mathematics, 542 (2007), 114, http://dx.doi.org/10.3103/S1066369X07070018.
  • Berger, M., Geometry I, Springer-Verlag, Berlin, Heidelberg, 1987.
  • Dieudonne, J. A. ,Carrell, J.B. , Invariant Theory, Academic Press, New-York, London, 1971.
  • Greub, W. H. , Linear Algebra, Springer-Verlag, New York Inc., 1967.
  • İncesu, M., Gürsoy, O., LS(2)-equivalence conditions of control points and application to planar Bezier curves, New Trends in Mathematical Sciences, 5(3) (2017), 70-84., http://dx.doi.org/10.20852/ntmsci.2017.186.
  • Höfer, R., m-Point invariants of real geometries, Beitrage Algebra Geom., 40 (1999), 261-266.
  • Ören, İ., Khadjiev, D., Pekşen, Ö., Identifications of paths and curves under the plane similarity transformations and their applications to mechanics, Journal of Geometry and Physics, 151 (2020), 1-17, 103619, https://doi.org/10.1016/j.geomphys.2020.103619.
  • Khadjiev, D.,Application of the Invariant Theory to the Differential Geometry of Curves, Fan Publisher, Tashkent, 1988, [in Russian].
  • Khadjiev, D., Pekşen, Ö., The complete system of global integral and differential invariants for equi-affine curves, Differential Geometry and its Applications, 20 (2004), 167-175, https://doi.org/10.1016/j.difgeo.2003.10.005.
  • Khadjiev, D., Complete systems of differential invariants of vector fields in a Euclidean space, Turkish Journal of Mathematics, 34(2010), 543-559,https://doi.org/10.3906/mat-0809-10
  • Khadjiev, D., On invariants of immersions of an n-dimensional manifold in an n-dimensional pseudo-euclidean space, Journal of Nonlinear Mathematical Physics, 17(1) (2010), 49-70, https://doi.org/10.1142/S1402925110000799.
  • Khadjiev, D., Ören, İ., Pekşen, Ö., Generating systems of differential invariants and the theorem on existence for curves in the pseudo-Euclidean geometry, Turkish Journal of Mathematics, 37 (2013), 80-94, https://doi.org/10.3906/mat-1104-41.
  • Khadjiev, D., Göksal, Y., Applications of hyperbolic numbers to the invariant theory in two-dimensional pseudo-Euclidean space, Adv. Appl. Clifford Algebras, 26 (2016) 645-668, https://doi.org/10.1007/s00006-015-0627-9
  • Khadjiev, D., Ören, İ., Pekşen, Ö., Global invariants of paths and curves for the group of all linear similarities in the two-dimensional Euclidean space, International Journal of Geometric Methods in Modern Physics, 15(6) (2018), 1850092, https://doi.org/10.1142/S0219887818500925.
  • Khadjiev, D., Projective invariants of m-tuples in the one-dimensional projective space, Uzbek Mathematical Journal, 1 (2019) 61-73.
  • Khadjiev, D., Ayupov, Sh., Beshimov, G., Complete systems of invariant of m-tuples for fundamental groups of the two-dimensional Euclidian space, Uzbek Mathematical Journal, 1 (2020), 57-84.
  • Khadjiev, D., Bekbaev, U., Aripov, R., On equivalence of vector-valued maps, arXiv:2005.08707v1 [math GM] 13 May 2020.
  • Khadjiev, D., Ayupov, Sh., Beshimov, G., Affine invariants of a parametric figure for fundamental groups of n-dimensional affine space, Uzbek Mathematical Journal, 65(4)(2021), 27-47.
  • Mundy, J. L. , Zisserman, A., Forsyth , D.(Eds.), Applications of Invariance in Computer Vision, Springer-Verlag, Berlin, Heidelberg, New York, 1994.
  • Mumford, D., Fogarty, J., Geometric Invariant Theory, Springer-Verlag, Berlin, Heidelberg, 1994.
  • O’Rourke, J.,Computational Geometry in C , Cambridge University Press, 1997.
  • Ören, İ., Equivalence conditions of two Bezier curves in the Euclidean geometry, Iranian Journal of Science and Technology, Transactions A: Science, 42(3) (2018), 1563-1577., http://dx.doi.org/10.1007/s40995-016-0129-1.
  • Ören, İ., Invariants of m-vectors in Lorentzian geometry, International Electronic Journal of Geometry, 9(1)(2016), 38-44.
  • Pekşen, Ö., Khadjiev, D., Invariants of curves in centro-affine geometry, J. Math. Kyoto Univ., 44(3)(2004), 603-613.
  • Pekşen, Ö., Khadjiev, D., On invariants of null curves in the pseudo-Euclidean geometry, Differential Geometry and its Applications 29 (2011), 183-187, https://doi.org/10.1016/j.difgeo.2011.04.024.
  • Pekşen, Ö., Khadjiev, D., Ören, İ., Invariant parametrizations and complete systems of global invariants of curves in the pseudo-euclidean geometry, Turkish Journal of Mathematics , 36 (2012), 147-160, http://dx.doi.org/10.3906/mat-0911-145.
  • Reiss, T. H. ,Recognizing Planar Objects Using Invariant Image Features, Springer-Verlag, Berlin, Heidelberg, New York, 1993.
  • Sağıroğlu, Y., Khadjiev, D., Gözütok, U., Differential invariants of non-degenerate surfaces, Applications and Applied Mathematics, Special issue, 3 ( 2019), 35-57.
  • Sibirskii, K. S., Introduction to the Algebraic Invariants of Differential Equations, Manchester University Press, New York, 1988.
  • Springer, T. A., Invariant Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1977.
  • Weyl, H., The Classical Groups: Their Invariants and Representations, Princeton Univ. Press, Princeton, New Jersey, 1946.
There are 31 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Djavvat Khadjiev 0000-0001-7056-5662

Gayrat Beshimov This is me 0000-0002-5394-2179

İdris Ören 0000-0003-2716-3945

Project Number UT-OT-2020-2 and 119N643
Publication Date March 30, 2023
Submission Date October 3, 2021
Acceptance Date September 19, 2022
Published in Issue Year 2023

Cite

APA Khadjiev, D., Beshimov, G., & Ören, İ. (2023). Invariants of a mapping of a set to the two-dimensional Euclidean space. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 72(1), 137-158. https://doi.org/10.31801/cfsuasmas.1003511
AMA Khadjiev D, Beshimov G, Ören İ. Invariants of a mapping of a set to the two-dimensional Euclidean space. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. March 2023;72(1):137-158. doi:10.31801/cfsuasmas.1003511
Chicago Khadjiev, Djavvat, Gayrat Beshimov, and İdris Ören. “Invariants of a Mapping of a Set to the Two-Dimensional Euclidean Space”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72, no. 1 (March 2023): 137-58. https://doi.org/10.31801/cfsuasmas.1003511.
EndNote Khadjiev D, Beshimov G, Ören İ (March 1, 2023) Invariants of a mapping of a set to the two-dimensional Euclidean space. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72 1 137–158.
IEEE D. Khadjiev, G. Beshimov, and İ. Ören, “Invariants of a mapping of a set to the two-dimensional Euclidean space”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 72, no. 1, pp. 137–158, 2023, doi: 10.31801/cfsuasmas.1003511.
ISNAD Khadjiev, Djavvat et al. “Invariants of a Mapping of a Set to the Two-Dimensional Euclidean Space”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72/1 (March 2023), 137-158. https://doi.org/10.31801/cfsuasmas.1003511.
JAMA Khadjiev D, Beshimov G, Ören İ. Invariants of a mapping of a set to the two-dimensional Euclidean space. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72:137–158.
MLA Khadjiev, Djavvat et al. “Invariants of a Mapping of a Set to the Two-Dimensional Euclidean Space”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 72, no. 1, 2023, pp. 137-58, doi:10.31801/cfsuasmas.1003511.
Vancouver Khadjiev D, Beshimov G, Ören İ. Invariants of a mapping of a set to the two-dimensional Euclidean space. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72(1):137-58.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.