Research Article
BibTex RIS Cite
Year 2022, , 846 - 855, 30.09.2022
https://doi.org/10.31801/cfsuasmas.1009068

Abstract

References

  • Euler, L., Introduction in Analysin Infinitorum, vol. 1, Lausanne, Switzerland, Bousquet, 1748.
  • Ernst, T., The History of q-Calculus and a New Method, U.U.D.M. Report 2000, 16, Uppsala, Department of Mathematics, Uppsala University, 2000.
  • Kac, V., Cheung, P., Quantum Calculus, Universitext, Springer, New York, 2002.
  • Annaby, M.H., Mansour, Z.S., q-Fractional Calculus and Equations, Lecture Notes in Mathematics, vol. 2056, Springer, Heidelberg, 2012. https://doi.org/10.1007/978-3-642- 30898-7
  • Karahan, D., Mamedov, Kh.R., Sampling theory associated with q-Sturm-Liouville operator with discontinuity conditions, Journal of Contemporary Applied Mathematics, 10(2) (2020), 1-9.
  • Liu, Z.G., On a System of q-Partial Differential Equations with Applications to q-Series, In:Andrews G., Garvan F., Analytic Number Theory, Modular Forms and q-Hypergeometric Series, ALLADI60 2016, Springer Proceedings in Mathematics and Statistics, Vol. 221, Springer, 2017.
  • Liu, Z.G., On the q-Partial Differential Equations and q-Series. In: The Legacy of Srinivasa Ramanujan, 213-250, Ramanujan Mathematical Society Lecture Notes Series, Vol. 20, Ramanujan Mathematical Society, Mysore, 2013.
  • Cao, J., Homogeneous q-partial difference equations and some applications, Advances in Applied Mathematics, 84 (2017), 47-72. https://doi.org/10.1016/j.aam.2016.11.001
  • Adewumi, A.O., Akindeinde, S.O., Aderogba, A.A., Ogundare, B.S., Laplace transform collocation method for solving hyperbolic telegraph equation, International Journal of Engineering Mathematics, (2017). https://doi.org/10.1155/2017/3504962
  • Modanli, M., Laplace transform collocation and Daftar-Gejii-Jafaris method for fractional order time varying linear dynamical systems, Physica Scripta, 96(9) (2021), 094003. https://doi.org/10.1088/1402-4896/ac00e7
  • Hahn, W., Beitrage zur Theorie der Heineschen Reihen (German), Math. Nachr., 2 (1949), 340-379. https://doi.org/10.1002/mana.19490020604
  • Daiz, R., Ternel C., q, k-generalized gamma and beta functions, J. Nonlinear Math. Phys., 12(1) (2005), 118-131.
  • De Sole, A., Kac, V.G., On integral representations of q-gamma and q-beta functions, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, 16(1) (2005), 11-29.

On the solutions of the q-analogue of the telegraph differential equation

Year 2022, , 846 - 855, 30.09.2022
https://doi.org/10.31801/cfsuasmas.1009068

Abstract

In this work, q-analogue of the telegraph differential equation is investigated. The approximation solution of q-analogue of the telegraph differential equation is founded by using the Laplace transform collocation method (LTCM). Then, the exact solution is compared with the approximation solution for q-analogue of the telegraph differential equation. The results showed that the method is useful and effective for q-analogue of the telegraph differential equation.

References

  • Euler, L., Introduction in Analysin Infinitorum, vol. 1, Lausanne, Switzerland, Bousquet, 1748.
  • Ernst, T., The History of q-Calculus and a New Method, U.U.D.M. Report 2000, 16, Uppsala, Department of Mathematics, Uppsala University, 2000.
  • Kac, V., Cheung, P., Quantum Calculus, Universitext, Springer, New York, 2002.
  • Annaby, M.H., Mansour, Z.S., q-Fractional Calculus and Equations, Lecture Notes in Mathematics, vol. 2056, Springer, Heidelberg, 2012. https://doi.org/10.1007/978-3-642- 30898-7
  • Karahan, D., Mamedov, Kh.R., Sampling theory associated with q-Sturm-Liouville operator with discontinuity conditions, Journal of Contemporary Applied Mathematics, 10(2) (2020), 1-9.
  • Liu, Z.G., On a System of q-Partial Differential Equations with Applications to q-Series, In:Andrews G., Garvan F., Analytic Number Theory, Modular Forms and q-Hypergeometric Series, ALLADI60 2016, Springer Proceedings in Mathematics and Statistics, Vol. 221, Springer, 2017.
  • Liu, Z.G., On the q-Partial Differential Equations and q-Series. In: The Legacy of Srinivasa Ramanujan, 213-250, Ramanujan Mathematical Society Lecture Notes Series, Vol. 20, Ramanujan Mathematical Society, Mysore, 2013.
  • Cao, J., Homogeneous q-partial difference equations and some applications, Advances in Applied Mathematics, 84 (2017), 47-72. https://doi.org/10.1016/j.aam.2016.11.001
  • Adewumi, A.O., Akindeinde, S.O., Aderogba, A.A., Ogundare, B.S., Laplace transform collocation method for solving hyperbolic telegraph equation, International Journal of Engineering Mathematics, (2017). https://doi.org/10.1155/2017/3504962
  • Modanli, M., Laplace transform collocation and Daftar-Gejii-Jafaris method for fractional order time varying linear dynamical systems, Physica Scripta, 96(9) (2021), 094003. https://doi.org/10.1088/1402-4896/ac00e7
  • Hahn, W., Beitrage zur Theorie der Heineschen Reihen (German), Math. Nachr., 2 (1949), 340-379. https://doi.org/10.1002/mana.19490020604
  • Daiz, R., Ternel C., q, k-generalized gamma and beta functions, J. Nonlinear Math. Phys., 12(1) (2005), 118-131.
  • De Sole, A., Kac, V.G., On integral representations of q-gamma and q-beta functions, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, 16(1) (2005), 11-29.
There are 13 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Research Articles
Authors

Döne Karahan 0000-0001-6644-5596

Publication Date September 30, 2022
Submission Date October 13, 2021
Acceptance Date April 18, 2022
Published in Issue Year 2022

Cite

APA Karahan, D. (2022). On the solutions of the q-analogue of the telegraph differential equation. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(3), 846-855. https://doi.org/10.31801/cfsuasmas.1009068
AMA Karahan D. On the solutions of the q-analogue of the telegraph differential equation. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. September 2022;71(3):846-855. doi:10.31801/cfsuasmas.1009068
Chicago Karahan, Döne. “On the Solutions of the Q-Analogue of the Telegraph Differential Equation”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71, no. 3 (September 2022): 846-55. https://doi.org/10.31801/cfsuasmas.1009068.
EndNote Karahan D (September 1, 2022) On the solutions of the q-analogue of the telegraph differential equation. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71 3 846–855.
IEEE D. Karahan, “On the solutions of the q-analogue of the telegraph differential equation”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 71, no. 3, pp. 846–855, 2022, doi: 10.31801/cfsuasmas.1009068.
ISNAD Karahan, Döne. “On the Solutions of the Q-Analogue of the Telegraph Differential Equation”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71/3 (September 2022), 846-855. https://doi.org/10.31801/cfsuasmas.1009068.
JAMA Karahan D. On the solutions of the q-analogue of the telegraph differential equation. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71:846–855.
MLA Karahan, Döne. “On the Solutions of the Q-Analogue of the Telegraph Differential Equation”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 71, no. 3, 2022, pp. 846-55, doi:10.31801/cfsuasmas.1009068.
Vancouver Karahan D. On the solutions of the q-analogue of the telegraph differential equation. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71(3):846-55.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.