Research Article
BibTex RIS Cite

Parity of an odd dominating set

Year 2022, , 1023 - 1028, 30.12.2022
https://doi.org/10.31801/cfsuasmas.1051208

Abstract

For a simple graph $G$ with vertex set $V(G)=\{v_1,...,v_n\}$, we define the closed neighborhood set of a vertex $u$ as \\$N[u]=\{v \in V(G) \; | \; v \; \text{is adjacent to} \; u \; \text{or} \; v=u \}$ and the closed neighborhood matrix $N(G)$ as the matrix whose $i$th column is the characteristic vector of $N[v_i]$. We say a set $S$ is odd dominating if $N[u]\cap S$ is odd for all $u\in V(G)$. We prove that the parity of the cardinality of an odd dominating set of $G$ is equal to the parity of the rank of $G$, where rank of $G$ is defined as the dimension of the column space of $N(G)$. Using this result we prove several corollaries in one of which we obtain a general formula for the nullity of the join of graphs.

References

  • Amin, A. T., Slater, P. J., Neighborhood domination with parity restrictions in graphs, In Proceedings of the Twenty-third Southeastern International Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1992), 91 (1992), 19–30.
  • Amin, A. T., Slater, P. J., All parity realizable trees, J. Combin. Math. Combin. Comput., 20 (1996), 53–63.
  • Amin, A. T., Clark, L. H., Slater, P. J., Parity dimension for graphs, Discrete Math., 187(1-3) (1998), 1–17. https://doi.org/10.1016/S0012-365X(97)00242-2
  • Amin, A. T., Slater, P. J., Zhang, G. H., Parity dimension for graphs a linear algebraic approach, Linear Multilinear Algebra, 50(4) (2002), 327–342. https://doi.org/10.1080/0308108021000049293
  • Ballard, L. E., Budge, E. L., Stephenson, D. R., Lights out for graphs related to one another by constructions, Involve, 12(2) (2019), 181–201. https://doi.org/10.2140/involve.2019.12.181
  • Caro, Y., Simple proofs to three parity theorems, Ars Combin., 42 (1996), 175–180.
  • Cowen, R., Hechler, S. H., Kennedy, J. W., Ryba, A., Inversion and neighborhood inversion in graphs, Graph Theory Notes N. Y., 37 (1999), 37–41.
  • Eriksson, H., Eriksson, K., Sj¨ostrand, J., Note on the lamp lighting problem, Special issue in honor of Dominique Foata’s 65th birthday (Philadelphia, PA, 2000), 27 (2001), 357–366. https://doi.org/10.1006/aama.2001.0739
  • Sutner, K., Linear cellular automata and the Garden-of-Eden, Math. Intelligencer, 11(2) (1989), 49–53. https://doi.org/10.1007/BF03023823
  • Sutner, K., The σ-game and cellular automata, Amer. Math. Monthly, 97(1) (1990), 24–34. https://doi.org/10.1080/00029890.1990.11995540
Year 2022, , 1023 - 1028, 30.12.2022
https://doi.org/10.31801/cfsuasmas.1051208

Abstract

References

  • Amin, A. T., Slater, P. J., Neighborhood domination with parity restrictions in graphs, In Proceedings of the Twenty-third Southeastern International Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1992), 91 (1992), 19–30.
  • Amin, A. T., Slater, P. J., All parity realizable trees, J. Combin. Math. Combin. Comput., 20 (1996), 53–63.
  • Amin, A. T., Clark, L. H., Slater, P. J., Parity dimension for graphs, Discrete Math., 187(1-3) (1998), 1–17. https://doi.org/10.1016/S0012-365X(97)00242-2
  • Amin, A. T., Slater, P. J., Zhang, G. H., Parity dimension for graphs a linear algebraic approach, Linear Multilinear Algebra, 50(4) (2002), 327–342. https://doi.org/10.1080/0308108021000049293
  • Ballard, L. E., Budge, E. L., Stephenson, D. R., Lights out for graphs related to one another by constructions, Involve, 12(2) (2019), 181–201. https://doi.org/10.2140/involve.2019.12.181
  • Caro, Y., Simple proofs to three parity theorems, Ars Combin., 42 (1996), 175–180.
  • Cowen, R., Hechler, S. H., Kennedy, J. W., Ryba, A., Inversion and neighborhood inversion in graphs, Graph Theory Notes N. Y., 37 (1999), 37–41.
  • Eriksson, H., Eriksson, K., Sj¨ostrand, J., Note on the lamp lighting problem, Special issue in honor of Dominique Foata’s 65th birthday (Philadelphia, PA, 2000), 27 (2001), 357–366. https://doi.org/10.1006/aama.2001.0739
  • Sutner, K., Linear cellular automata and the Garden-of-Eden, Math. Intelligencer, 11(2) (1989), 49–53. https://doi.org/10.1007/BF03023823
  • Sutner, K., The σ-game and cellular automata, Amer. Math. Monthly, 97(1) (1990), 24–34. https://doi.org/10.1080/00029890.1990.11995540
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Ahmet Batal 0000-0003-2869-6110

Publication Date December 30, 2022
Submission Date December 30, 2021
Acceptance Date June 2, 2022
Published in Issue Year 2022

Cite

APA Batal, A. (2022). Parity of an odd dominating set. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(4), 1023-1028. https://doi.org/10.31801/cfsuasmas.1051208
AMA Batal A. Parity of an odd dominating set. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2022;71(4):1023-1028. doi:10.31801/cfsuasmas.1051208
Chicago Batal, Ahmet. “Parity of an Odd Dominating Set”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71, no. 4 (December 2022): 1023-28. https://doi.org/10.31801/cfsuasmas.1051208.
EndNote Batal A (December 1, 2022) Parity of an odd dominating set. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71 4 1023–1028.
IEEE A. Batal, “Parity of an odd dominating set”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 71, no. 4, pp. 1023–1028, 2022, doi: 10.31801/cfsuasmas.1051208.
ISNAD Batal, Ahmet. “Parity of an Odd Dominating Set”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71/4 (December 2022), 1023-1028. https://doi.org/10.31801/cfsuasmas.1051208.
JAMA Batal A. Parity of an odd dominating set. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71:1023–1028.
MLA Batal, Ahmet. “Parity of an Odd Dominating Set”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 71, no. 4, 2022, pp. 1023-8, doi:10.31801/cfsuasmas.1051208.
Vancouver Batal A. Parity of an odd dominating set. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71(4):1023-8.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.