Research Article
BibTex RIS Cite

Approximation properties of the fractional q-integral of Riemann-Liouville integral type Szasz-Mirakyan-Kantorovich operators

Year 2022, , 1136 - 1168, 30.12.2022
https://doi.org/10.31801/cfsuasmas.1067635

Abstract

In the present paper, we introduce the fractional q-integral of Riemann-Liouville integral type Szász-Mirakyan-Kantorovich operators. Korovkin-type approximation theorem is given and the order of convergence of these operators are obtained by using Lipschitz-type maximal functions, second order modulus of smoothness and Peetre's K-functional. Weighted approximation properties of these operators in terms of modulus of continuity have been investigated. Then, for these operators, we give a Voronovskaya-type theorem. Moreover, bivariate fractional q- integral Riemann-Liouville fractional integral type Szász-Mirakyan-Kantorovich operators are constructed. The last section is devoted to detailed graphical representation and error estimation results for these operators.

References

  • Ditzian, Z, Totik, V., Moduli of Smoothness, Springer Series in Computational Mathematics, New-York Springer, 1987.
  • Aral, A., Limmam, L.M, Özsaraç, F., Approximation properties of Szasz-Mirakjan-Mirakyan Kantorovich type operators, Math. Methods Appl. Sci., 42(16) (2019), 5233-5240. https://doi:10.1002/mma.5280
  • Duman, O., Özarslan, M.A., Vecchia, B.D., Modified Sz´asz-Mirakjan-Kantorovich operators preserving linear functions, Turk J Math., 33 (2009), 151-158. https://doi:10.3906/mat-0801-2
  • Aral, A., Inoan, D., Rasa, I., On the generalized Sz´asz-Mirakyan operators, Results Math., 65 (2014), 441-452. https://doi:10.1007/s00025-013-0356-0
  • Acar, T., Aral, A., Cardenas-Morales, D., Garrancho, P., Szasz-Mirakyan type operators which fix exponentials, Results in Math., 72 (2017), 1393-1404. https://doi:10.1007/s00025-017-0665-9
  • Acar, T., Aral, A., Gonska, H., On Szasz-Mirakyan operators preserving $e^2ax$, $a > 0$, Mediterr. J. Math., 14(6) (2017). https://doi.org/10.1007/s00009-016-0804-7
  • Gupta, V., Approximation with Positive Linear Operators and Linear Combinations, Springer International Publishing, 2017.
  • Gupta, V., Aral, A., A note on Szasz-Mirakyan-Kantorovich type operators preserving $e^-x$, Positivity, 22 (2018), 415-423. https://doi.org/10.1007/s11117-017-0518-5
  • Otto, S., Generalization of S. Bernstein’s polynomials to the infinite interval, J. Res. Nat. Bur. of Standards, 45(3) (1950), 239-245.
  • Mirakjan, G.M., Approximation of continuous functions with the aid of polynomials, In Dokl. Acad. Nauk SSSR, 31 (1941), 201-205.
  • Devore, R.A., Lorentz, G.G., Constructive Approximation, Springer-Verlang, New York-London, 1993.
  • Gadjieva, A.D., A problem on the convergence of a sequence of positive linear operators on unbounded sets, and theorems that are analogous to P.P. Korovkin’s theorem, Doklady Akademii Nauk SSSR, 218(5) (1974), 1001-1004.
  • Doğru, O., Gadjieva, E., Ağırlıklı uzaylarda Szasz tipinde operatörler dizisinin sürekli fonksiyonlara yaklaşımı, II. Kızılırmak Uluslararası Fen Bilimleri Kongresi Bildiri Kitabı, Kırıkkale, (1998), 29-37.
  • Dhamija, M., Pratap, R., Deo, N., Approximation by Kantorovich form of modified Szasz-Mirakyan operators, Appl. Math. Comput., 317 (2018), 109-120. https://doi.org/10.1016/j.amc.2017.09.004
  • Gupta, V., Acu, A.M., On Baskakov-Szasz-Mirakyan-type operators preserving exponential type functions, 22(3) (2018), 919-929. https://doi.org/10.1007/s11117-018-0553
  • Mursaleen, M., Alotaibi, A., Ansari, K.J., On a Kantorovich variant of Szasz- Mirakjan operators, J. Funct. Spaces, 2016. https://doi.org/10.1155/2016/1035253
  • Acar, T., Gupta, V., Aral, A., Rate of convergence for generalized Szasz operators, Bull. Math. Sci., 1 (2011), 99-113. https://doi.org/10.1007/s13373-011-0005-4
  • Agrawal, P.N., Gupta, V., Kumar, A.S., Kajla, A., Generalized Baskakov-Szasz type operators, Appl. Math. Comput., 236 (2014), 311-324. https://doi.org/10.1016/j.amc.2014.03.084
  • Aral, A., A generalization of Szasz-Mirakyan operators based on q-integers, Math. Comput. Modelling, 47(9-10) (2008), 1052-1062. https://doi.org/10.1016/j.amc.2014.03.084
  • Finta, Z., Govil, N.K., Gupta, V., Some results on modified Szasz-Mirakjan operators, J. Math. Anal. Appl., 327(2) (2007), 1284-1296. https://doi.org/10.3906/mat-0801-2
  • Mazhar, S.M., Totik, V., Approximation by modified Szasz operators, Acta Sci. Math., 49 (1985), 257-269.
  • Totik, V., Approximation by Szasz-Mirakjan-Kantorovich operators in $L_ {p}$ $(p > 1)$, Analysis Mathematica, 9(2) (1983), 147-167. https://doi.org/10.1007/bf01982010
  • Dahmani, Z., Tabharit, L., Taf, S., New generalizations of Gruss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., 2(3) (2010), 93-99.
  • Katugompola, U.N., New approach generalized fractional integral, Applied Math and Comp., 218(3) (2011), 860-865. https://doi.org/10.1016/j.amc.2011.03.062
  • Latif, M.A., Hussain, S., New inequalities of Ostrowski type for co-ordineted convex functions via fractional integrals, Journal of Fractional Calculus and Applications, 2(9) (2012), 1-15.
  • Romero, L.G., Luque, L.L., Dorrego, G.A., Cerutti, R.A., On the k-Riemann Liouville fractional derivative, Int. J. Contemp. Math. Sciences, 8(1) (2013), 41-51. http://dx.doi.org/10.12988/ijcms.2013.13004
  • Tunc, M., On new inequalities for h-convex functions via Riemann-Liouville fractional integration, Filomat, 27(4) (2013), 559–565. https://doi.org/10.2298/FIL1304559T
  • Mahmudov, N.I., On q-Parametric Szasz-Mirakjan operators, Mediterr. J. Math., 7 (2010), 297–311. https://doi.org/10.1007/s00009-010-0037-0
  • Mahmudov, N.I, Approximation properties of complex q-Szasz-Mirakjan operators in compact disks, Computers and Mathematics with Applications, 60(6) (2010), 1784-1791. https://doi.org/10.1016/j.camwa.2010.07.009
  • Aral, A., Gupta, V., The q-derivative and applications to q-Szasz Mirakyan operators, Calcolo, 43(3) (2006), 151-170. https://doi.org/10.1007/s10092-006-0119-3
  • Cai, Q., Zeng, X.M., Cui, Z., Approximation properties of the modification of Kantorovich type q-Szasz operators, J. Computational Analysis and Applications, 15(1) (2013), 176-187.
  • Gal, S., Mahmudov, N.I, Kara, M., Approximation by complex q-Szasz-Kantorovich operators in compact disks, q > 1, Complex Anal. Oper. Theory, 7 (2013), 1853-1867. https://doi.org/10.1007/s11785-012-0257-3
  • Örküvü, M., Doğru, O., q-Szasz Mirakyan Kantorovich type operators preserving some test functions, Appl. Math. Lett., 24(9) (2011), 1588-1593. https://doi.org/10.1016/j.aml.2011.04.001
  • Mahmudov, N.I., Vijay, G., On certain q-analogue of Szasz Kantorovich operators, J. Appl. Math. Comput., 37 (2011), 407-419. https://doi.org/10.1007/s12190-010-0441-4
  • Tariboon, J., Ntouyas, S.K., Agarwal, P., New concepts of fractional quantum calculusand applications to impulsive fractional q-difference equations, Advance in Difference Equations, 18 (2015). https://doi.org/10.1186/s13662-014-0348-8
  • Kac, V., Cheung, P., Quantum Calculus, Universitext, New York, 2002.
  • Becker, M., Global approximation theorems for Szasz -Mirakjan and Baskakov operators in polynomial weight spaces, Indiana Univ. Math. J., 27(1) (1978), 127-142.
  • Lenze, B., On Lipschitz type maximal functions and their smoothness spaces, Nederl. Akad. Indag. Math., 91(1) (1988), 53-63.
  • Lopez-Moreno, A.J., Weighted simultaneous approximation with Baskakov type operators, Acta Mathematica Academiae Scientiarum Hungaricae, 104 (2004), 143-151. https://doi.org/10.1023/B:AMHU.0000034368.81211.23
  • Volkov, V.I., On the convergence of sequences of linear positive operators in the space of continuous functions of two variables, Dokl. Akad. Nauk SSSR, 115(1) (1957), 17-19.
  • Gupta, V., Agarwal, R.P., Convergence Estimates in Approximation Theory, Springer International Publishing, 2014.
Year 2022, , 1136 - 1168, 30.12.2022
https://doi.org/10.31801/cfsuasmas.1067635

Abstract

References

  • Ditzian, Z, Totik, V., Moduli of Smoothness, Springer Series in Computational Mathematics, New-York Springer, 1987.
  • Aral, A., Limmam, L.M, Özsaraç, F., Approximation properties of Szasz-Mirakjan-Mirakyan Kantorovich type operators, Math. Methods Appl. Sci., 42(16) (2019), 5233-5240. https://doi:10.1002/mma.5280
  • Duman, O., Özarslan, M.A., Vecchia, B.D., Modified Sz´asz-Mirakjan-Kantorovich operators preserving linear functions, Turk J Math., 33 (2009), 151-158. https://doi:10.3906/mat-0801-2
  • Aral, A., Inoan, D., Rasa, I., On the generalized Sz´asz-Mirakyan operators, Results Math., 65 (2014), 441-452. https://doi:10.1007/s00025-013-0356-0
  • Acar, T., Aral, A., Cardenas-Morales, D., Garrancho, P., Szasz-Mirakyan type operators which fix exponentials, Results in Math., 72 (2017), 1393-1404. https://doi:10.1007/s00025-017-0665-9
  • Acar, T., Aral, A., Gonska, H., On Szasz-Mirakyan operators preserving $e^2ax$, $a > 0$, Mediterr. J. Math., 14(6) (2017). https://doi.org/10.1007/s00009-016-0804-7
  • Gupta, V., Approximation with Positive Linear Operators and Linear Combinations, Springer International Publishing, 2017.
  • Gupta, V., Aral, A., A note on Szasz-Mirakyan-Kantorovich type operators preserving $e^-x$, Positivity, 22 (2018), 415-423. https://doi.org/10.1007/s11117-017-0518-5
  • Otto, S., Generalization of S. Bernstein’s polynomials to the infinite interval, J. Res. Nat. Bur. of Standards, 45(3) (1950), 239-245.
  • Mirakjan, G.M., Approximation of continuous functions with the aid of polynomials, In Dokl. Acad. Nauk SSSR, 31 (1941), 201-205.
  • Devore, R.A., Lorentz, G.G., Constructive Approximation, Springer-Verlang, New York-London, 1993.
  • Gadjieva, A.D., A problem on the convergence of a sequence of positive linear operators on unbounded sets, and theorems that are analogous to P.P. Korovkin’s theorem, Doklady Akademii Nauk SSSR, 218(5) (1974), 1001-1004.
  • Doğru, O., Gadjieva, E., Ağırlıklı uzaylarda Szasz tipinde operatörler dizisinin sürekli fonksiyonlara yaklaşımı, II. Kızılırmak Uluslararası Fen Bilimleri Kongresi Bildiri Kitabı, Kırıkkale, (1998), 29-37.
  • Dhamija, M., Pratap, R., Deo, N., Approximation by Kantorovich form of modified Szasz-Mirakyan operators, Appl. Math. Comput., 317 (2018), 109-120. https://doi.org/10.1016/j.amc.2017.09.004
  • Gupta, V., Acu, A.M., On Baskakov-Szasz-Mirakyan-type operators preserving exponential type functions, 22(3) (2018), 919-929. https://doi.org/10.1007/s11117-018-0553
  • Mursaleen, M., Alotaibi, A., Ansari, K.J., On a Kantorovich variant of Szasz- Mirakjan operators, J. Funct. Spaces, 2016. https://doi.org/10.1155/2016/1035253
  • Acar, T., Gupta, V., Aral, A., Rate of convergence for generalized Szasz operators, Bull. Math. Sci., 1 (2011), 99-113. https://doi.org/10.1007/s13373-011-0005-4
  • Agrawal, P.N., Gupta, V., Kumar, A.S., Kajla, A., Generalized Baskakov-Szasz type operators, Appl. Math. Comput., 236 (2014), 311-324. https://doi.org/10.1016/j.amc.2014.03.084
  • Aral, A., A generalization of Szasz-Mirakyan operators based on q-integers, Math. Comput. Modelling, 47(9-10) (2008), 1052-1062. https://doi.org/10.1016/j.amc.2014.03.084
  • Finta, Z., Govil, N.K., Gupta, V., Some results on modified Szasz-Mirakjan operators, J. Math. Anal. Appl., 327(2) (2007), 1284-1296. https://doi.org/10.3906/mat-0801-2
  • Mazhar, S.M., Totik, V., Approximation by modified Szasz operators, Acta Sci. Math., 49 (1985), 257-269.
  • Totik, V., Approximation by Szasz-Mirakjan-Kantorovich operators in $L_ {p}$ $(p > 1)$, Analysis Mathematica, 9(2) (1983), 147-167. https://doi.org/10.1007/bf01982010
  • Dahmani, Z., Tabharit, L., Taf, S., New generalizations of Gruss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., 2(3) (2010), 93-99.
  • Katugompola, U.N., New approach generalized fractional integral, Applied Math and Comp., 218(3) (2011), 860-865. https://doi.org/10.1016/j.amc.2011.03.062
  • Latif, M.A., Hussain, S., New inequalities of Ostrowski type for co-ordineted convex functions via fractional integrals, Journal of Fractional Calculus and Applications, 2(9) (2012), 1-15.
  • Romero, L.G., Luque, L.L., Dorrego, G.A., Cerutti, R.A., On the k-Riemann Liouville fractional derivative, Int. J. Contemp. Math. Sciences, 8(1) (2013), 41-51. http://dx.doi.org/10.12988/ijcms.2013.13004
  • Tunc, M., On new inequalities for h-convex functions via Riemann-Liouville fractional integration, Filomat, 27(4) (2013), 559–565. https://doi.org/10.2298/FIL1304559T
  • Mahmudov, N.I., On q-Parametric Szasz-Mirakjan operators, Mediterr. J. Math., 7 (2010), 297–311. https://doi.org/10.1007/s00009-010-0037-0
  • Mahmudov, N.I, Approximation properties of complex q-Szasz-Mirakjan operators in compact disks, Computers and Mathematics with Applications, 60(6) (2010), 1784-1791. https://doi.org/10.1016/j.camwa.2010.07.009
  • Aral, A., Gupta, V., The q-derivative and applications to q-Szasz Mirakyan operators, Calcolo, 43(3) (2006), 151-170. https://doi.org/10.1007/s10092-006-0119-3
  • Cai, Q., Zeng, X.M., Cui, Z., Approximation properties of the modification of Kantorovich type q-Szasz operators, J. Computational Analysis and Applications, 15(1) (2013), 176-187.
  • Gal, S., Mahmudov, N.I, Kara, M., Approximation by complex q-Szasz-Kantorovich operators in compact disks, q > 1, Complex Anal. Oper. Theory, 7 (2013), 1853-1867. https://doi.org/10.1007/s11785-012-0257-3
  • Örküvü, M., Doğru, O., q-Szasz Mirakyan Kantorovich type operators preserving some test functions, Appl. Math. Lett., 24(9) (2011), 1588-1593. https://doi.org/10.1016/j.aml.2011.04.001
  • Mahmudov, N.I., Vijay, G., On certain q-analogue of Szasz Kantorovich operators, J. Appl. Math. Comput., 37 (2011), 407-419. https://doi.org/10.1007/s12190-010-0441-4
  • Tariboon, J., Ntouyas, S.K., Agarwal, P., New concepts of fractional quantum calculusand applications to impulsive fractional q-difference equations, Advance in Difference Equations, 18 (2015). https://doi.org/10.1186/s13662-014-0348-8
  • Kac, V., Cheung, P., Quantum Calculus, Universitext, New York, 2002.
  • Becker, M., Global approximation theorems for Szasz -Mirakjan and Baskakov operators in polynomial weight spaces, Indiana Univ. Math. J., 27(1) (1978), 127-142.
  • Lenze, B., On Lipschitz type maximal functions and their smoothness spaces, Nederl. Akad. Indag. Math., 91(1) (1988), 53-63.
  • Lopez-Moreno, A.J., Weighted simultaneous approximation with Baskakov type operators, Acta Mathematica Academiae Scientiarum Hungaricae, 104 (2004), 143-151. https://doi.org/10.1023/B:AMHU.0000034368.81211.23
  • Volkov, V.I., On the convergence of sequences of linear positive operators in the space of continuous functions of two variables, Dokl. Akad. Nauk SSSR, 115(1) (1957), 17-19.
  • Gupta, V., Agarwal, R.P., Convergence Estimates in Approximation Theory, Springer International Publishing, 2014.
There are 41 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Research Articles
Authors

Mustafa Kara 0000-0003-3091-5781

Publication Date December 30, 2022
Submission Date February 3, 2022
Acceptance Date June 6, 2022
Published in Issue Year 2022

Cite

APA Kara, M. (2022). Approximation properties of the fractional q-integral of Riemann-Liouville integral type Szasz-Mirakyan-Kantorovich operators. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(4), 1136-1168. https://doi.org/10.31801/cfsuasmas.1067635
AMA Kara M. Approximation properties of the fractional q-integral of Riemann-Liouville integral type Szasz-Mirakyan-Kantorovich operators. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2022;71(4):1136-1168. doi:10.31801/cfsuasmas.1067635
Chicago Kara, Mustafa. “Approximation Properties of the Fractional Q-Integral of Riemann-Liouville Integral Type Szasz-Mirakyan-Kantorovich Operators”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71, no. 4 (December 2022): 1136-68. https://doi.org/10.31801/cfsuasmas.1067635.
EndNote Kara M (December 1, 2022) Approximation properties of the fractional q-integral of Riemann-Liouville integral type Szasz-Mirakyan-Kantorovich operators. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71 4 1136–1168.
IEEE M. Kara, “Approximation properties of the fractional q-integral of Riemann-Liouville integral type Szasz-Mirakyan-Kantorovich operators”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 71, no. 4, pp. 1136–1168, 2022, doi: 10.31801/cfsuasmas.1067635.
ISNAD Kara, Mustafa. “Approximation Properties of the Fractional Q-Integral of Riemann-Liouville Integral Type Szasz-Mirakyan-Kantorovich Operators”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71/4 (December 2022), 1136-1168. https://doi.org/10.31801/cfsuasmas.1067635.
JAMA Kara M. Approximation properties of the fractional q-integral of Riemann-Liouville integral type Szasz-Mirakyan-Kantorovich operators. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71:1136–1168.
MLA Kara, Mustafa. “Approximation Properties of the Fractional Q-Integral of Riemann-Liouville Integral Type Szasz-Mirakyan-Kantorovich Operators”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 71, no. 4, 2022, pp. 1136-68, doi:10.31801/cfsuasmas.1067635.
Vancouver Kara M. Approximation properties of the fractional q-integral of Riemann-Liouville integral type Szasz-Mirakyan-Kantorovich operators. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71(4):1136-68.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.