Research Article
BibTex RIS Cite
Year 2023, , 32 - 42, 30.03.2023
https://doi.org/10.31801/cfsuasmas.1089790

Abstract

References

  • Abu-Omar, A., Kittaneh, F., Upper and lower bounds for the numerical radius with an application to involution operators, Rocky Mountain J. Math., 45 (2015), 1055-1065. https://doi.org/10.1216/RMJ-2015-45-4-1055
  • Aronzajn, N., Theory of reproducing kernels, Trans. Amer. Math. Soc., 68 (1950), 337-404.
  • Bakherad, M., Some Berezin number inequalities for operator matrices, Czechoslovak Mathematical Journal, 68(4) (2018), 997-1009. http://doi.org/10.21136/CMJ.2018.0048-17
  • Bakherad, M., Garayev, M. T., Berezin number inequalities for operators, Concrete Operators, 6(1) (2019), 33-43. http://doi.org/10.1515/conop-2019-0003
  • Başaran, H., Gürdal, M., Güncan, A. N., Some operator inequalities associated with Kantorovich and Hölder-McCarthy inequalities and their applications, Turkish J. Math., 43(1) (2019), 523-532. http://doi.org/10.3906/mat-1811-10
  • Bellman, R., Almost orthogonal series, Bull. Amer. Math. Soc., 50 (1944), 517-519.
  • Berezin, F. A., Covariant and contravariant symbols for operators, Math. USSR-Izvestiya, 6 (1972), 1117-1151. http://dx.doi.org/10.1070/IM1972v006n05ABEH001913
  • Boas, R. P., A general moment problem, Amer. J. Math., 63 (1941), 361-370. https://doi.org/10.2307/2371530
  • Dragomir, S. S., Some refinements of Schwarz inequality, Suppozionul de Matematica si Aplicatii, Poly Technical Institute Timisoara, Romania, (1985), 13-16.
  • Dragomir, S. S., Some inequalities for the norm and the numerical radius of linear operators in Hilbert Spaces, Tamkang J. Math., 39 (2008), 1-7. https://doi.org/10.5556/j.tkjm.39.2008.40
  • Garayev, M. T., Berezin symbols, Hölder-McCarthy and Young inequalities and their applications, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 43(2) (2017), 287-295.
  • Garayev, M., Bouzeffour, F., Gürdal, M., Yangöz, C. M., Refinements of Kantorovich type, Schwarz and Berezin number inequalities, Extracta Math., 35 (2020), 1-20. https://doi.org/10.17398/2605-5686.35.1.1
  • Garayev, M. T., Gürdal, M., Okudan, A., Hardy-Hilbert’s inequality and a power inequality for Berezin numbers for operators, Math. Inequal. Appl., 19 (2016), 883-891. https://doi.org/10.7153/mia-19-64
  • Garayev, M. T., Guedri, H., Gürdal, M., Alsahli, G. M., On some problems for operators on the reproducing kernel Hilbert space, Linear Multilinear Algebra, 69(11) (2021), 2059-2077. https://doi.10.1080/03081087.2019.1659220
  • Gustafson, K. E., Rao, D. K. M., Numerical Range, Springer-Verlag, New York, 1997. https://doi.org/10.1007/978-1-4613-8498-4 1
  • Huban, M. B., Upper and lower bounds of the A-Berezin number of operators, Turkish J. Math., 46(1) (2022), 189-206. https://doi.org/10.3906/mat-2108-90
  • Huban, M. B., Başaran, H., Gürdal, M., New upper bounds related to the Berezin number inequalities, J. Inequal. Spec. Funct., 12(3) (2021), 1-12.
  • Huban, M. B., Başaran, H., Gürdal, M., Berezin number inequalities via convex functions, Filomat, 36(7) (2022), 2333-2344. https://doi.org/10.2298/FIL2207333H
  • Karaev, M. T., Berezin symbol and invertibility of operators on the functional Hilbert spaces, J. Funct. Anal., 238 (2006), 181-192. https://doi.org/doi:10.1016/j.jfa.2006.04.030
  • Karaev, M. T., Reproducing kernels and Berezin symbols techniques in various questions of operator theory, Complex Anal. Oper. Theory, 7 (2013), 983-1018.
  • Kittaneh, F., A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math., 158 (2003), 11-17. https://doi.org/10.4064/sm158-1-2
  • Kittaneh, F., Norm inequalities for sums and diferences of positive operators, Linear Algebra Appl., 383 (2004), 85-91. https://doi.org/10.1016/j.laa.2003.11.023
  • Kittaneh, F., Notes on some inequalities for Hilbert Space operators, Publ. Res. Inst. Math. Sci., 24 (1988), 283-293. https://doi.org/10.2977/prims/1195175202
  • Mond, B., Pecaric, J., On Jensen’s inequality for operator convex functions, Houston J. Math., 21 (1995), 739-753.
  • Moradi, H. R., Sababheh, M., More accurate numerical radius inequalities (II), Linear Multilinear Algebra, 69(5) (2021), 921-933. https://doi.org/10.1080/03081087.2019.1703886
  • Moradi, H. R. Omidvar, M. E., Dragomir, S. S., Khan, M. S., Sesquilinear version of numerical range and numerical radius, Acta Univ. Sapientiae Math., 9(2) (2017), 324-335. https://doi.org/10.1515/ausm-2017-0024
  • Omidvar, M. E., Moradi, H. R., Shebrawi, K., Sharpening some classical numerical radius inequalities, Oper. Matrices, 12(2) (2018), 407-416. https://doi.org/10.7153/oam-2018-12-26
  • Sababheh, M., Moradi, H. R., More accurate numerical radius inequalities (I), Linear Multilinear Algebra, 69(10) (2021). https://doi.org/10.1080/03081087.2019.1651815
  • Safshekan, R., Farokhinia, A., Some refinements of numerical radius inequalities via convex functions, Applied Mathematics E-Notes, 21 (2021), 542-549.
  • Sattari, M., Moslehian, M. S., Yamazaki, T., Some generalized numerical radius inequalities for Hilbert space operators, Linear Algebra Appl., 470 (2015), 216-227. https://doi.org/10.1016/j.laa.2014.08.003
  • Tafazoli, S., Moradi, H. R., Furuichi, S., Harikrishnan, P., Further inequalities for the numerical radius of Hilbert space operators, J. Math. Inequal., 13 (2019), 955-967. https://doi.org/10.48550/arXiv.1907.06003
  • Tapdigoglu, R., New Berezin symbol inequalities for operators on the reproducing kernel Hilbert space, Oper. Matrices, 15(3) (2021), 1445-1460. https://doi.org/10.7153/oam-2021-15-64
  • Tapdigoglu, T., Gürdal, M., Altwaijry, N., Sarı, N., Davis-Wielandt-Berezin radius inequalities via Dragomir inequalities, Oper. Matrices, 15(4) (2021), 1445-1460. https://doi.org/10.7153/oam-2021-15-90

Some refinements of Berezin number inequalities via convex functions

Year 2023, , 32 - 42, 30.03.2023
https://doi.org/10.31801/cfsuasmas.1089790

Abstract

The Berezin transform $\widetilde{A}$ and the Berezin number of an operator
$A$ on the reproducing kernel Hilbert space over some set $\Omega$ with
normalized reproducing kernel $\widehat{k}_{\lambda}$ are defined,
respectively, by $\widetilde{A}(\lambda)=\left\langle {A}\widehat{k}_{\lambda
},\widehat{k}_{\lambda}\right\rangle ,\ \lambda\in\Omega$ and $\mathrm{ber}%
(A):=\sup_{\lambda\in\Omega}\left\vert \widetilde{A}{(\lambda)}\right\vert .$
A straightforward comparison between these characteristics yields the
inequalities $\mathrm{ber}\left( A\right) \leq\frac{1}{2}\left( \left\Vert
A\right\Vert _{\mathrm{ber}}+\left\Vert A^{2}\right\Vert _{\mathrm{ber}}%
^{1/2}\right) $. In this paper, we study further inequalities relating them.
Namely, we obtained some refinement of Berezin number inequalities involving
convex functions. In particular, for $A\in\mathcal{B}\left( \mathcal{H}%
\right) $ and $r\geq1$ we show that
\[
\mathrm{ber}^{2r}\left( A\right) \leq\frac{1}{4}\left( \left\Vert A^{\ast
}A+AA^{\ast}\right\Vert _{\mathrm{ber}}^{r}+\left\Vert A^{\ast}A-AA^{\ast
}\right\Vert _{\mathrm{ber}}^{r}\right) +\frac{1}{2}\mathrm{ber}^{r}\left(
A^{2}\right) .
\]

References

  • Abu-Omar, A., Kittaneh, F., Upper and lower bounds for the numerical radius with an application to involution operators, Rocky Mountain J. Math., 45 (2015), 1055-1065. https://doi.org/10.1216/RMJ-2015-45-4-1055
  • Aronzajn, N., Theory of reproducing kernels, Trans. Amer. Math. Soc., 68 (1950), 337-404.
  • Bakherad, M., Some Berezin number inequalities for operator matrices, Czechoslovak Mathematical Journal, 68(4) (2018), 997-1009. http://doi.org/10.21136/CMJ.2018.0048-17
  • Bakherad, M., Garayev, M. T., Berezin number inequalities for operators, Concrete Operators, 6(1) (2019), 33-43. http://doi.org/10.1515/conop-2019-0003
  • Başaran, H., Gürdal, M., Güncan, A. N., Some operator inequalities associated with Kantorovich and Hölder-McCarthy inequalities and their applications, Turkish J. Math., 43(1) (2019), 523-532. http://doi.org/10.3906/mat-1811-10
  • Bellman, R., Almost orthogonal series, Bull. Amer. Math. Soc., 50 (1944), 517-519.
  • Berezin, F. A., Covariant and contravariant symbols for operators, Math. USSR-Izvestiya, 6 (1972), 1117-1151. http://dx.doi.org/10.1070/IM1972v006n05ABEH001913
  • Boas, R. P., A general moment problem, Amer. J. Math., 63 (1941), 361-370. https://doi.org/10.2307/2371530
  • Dragomir, S. S., Some refinements of Schwarz inequality, Suppozionul de Matematica si Aplicatii, Poly Technical Institute Timisoara, Romania, (1985), 13-16.
  • Dragomir, S. S., Some inequalities for the norm and the numerical radius of linear operators in Hilbert Spaces, Tamkang J. Math., 39 (2008), 1-7. https://doi.org/10.5556/j.tkjm.39.2008.40
  • Garayev, M. T., Berezin symbols, Hölder-McCarthy and Young inequalities and their applications, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 43(2) (2017), 287-295.
  • Garayev, M., Bouzeffour, F., Gürdal, M., Yangöz, C. M., Refinements of Kantorovich type, Schwarz and Berezin number inequalities, Extracta Math., 35 (2020), 1-20. https://doi.org/10.17398/2605-5686.35.1.1
  • Garayev, M. T., Gürdal, M., Okudan, A., Hardy-Hilbert’s inequality and a power inequality for Berezin numbers for operators, Math. Inequal. Appl., 19 (2016), 883-891. https://doi.org/10.7153/mia-19-64
  • Garayev, M. T., Guedri, H., Gürdal, M., Alsahli, G. M., On some problems for operators on the reproducing kernel Hilbert space, Linear Multilinear Algebra, 69(11) (2021), 2059-2077. https://doi.10.1080/03081087.2019.1659220
  • Gustafson, K. E., Rao, D. K. M., Numerical Range, Springer-Verlag, New York, 1997. https://doi.org/10.1007/978-1-4613-8498-4 1
  • Huban, M. B., Upper and lower bounds of the A-Berezin number of operators, Turkish J. Math., 46(1) (2022), 189-206. https://doi.org/10.3906/mat-2108-90
  • Huban, M. B., Başaran, H., Gürdal, M., New upper bounds related to the Berezin number inequalities, J. Inequal. Spec. Funct., 12(3) (2021), 1-12.
  • Huban, M. B., Başaran, H., Gürdal, M., Berezin number inequalities via convex functions, Filomat, 36(7) (2022), 2333-2344. https://doi.org/10.2298/FIL2207333H
  • Karaev, M. T., Berezin symbol and invertibility of operators on the functional Hilbert spaces, J. Funct. Anal., 238 (2006), 181-192. https://doi.org/doi:10.1016/j.jfa.2006.04.030
  • Karaev, M. T., Reproducing kernels and Berezin symbols techniques in various questions of operator theory, Complex Anal. Oper. Theory, 7 (2013), 983-1018.
  • Kittaneh, F., A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math., 158 (2003), 11-17. https://doi.org/10.4064/sm158-1-2
  • Kittaneh, F., Norm inequalities for sums and diferences of positive operators, Linear Algebra Appl., 383 (2004), 85-91. https://doi.org/10.1016/j.laa.2003.11.023
  • Kittaneh, F., Notes on some inequalities for Hilbert Space operators, Publ. Res. Inst. Math. Sci., 24 (1988), 283-293. https://doi.org/10.2977/prims/1195175202
  • Mond, B., Pecaric, J., On Jensen’s inequality for operator convex functions, Houston J. Math., 21 (1995), 739-753.
  • Moradi, H. R., Sababheh, M., More accurate numerical radius inequalities (II), Linear Multilinear Algebra, 69(5) (2021), 921-933. https://doi.org/10.1080/03081087.2019.1703886
  • Moradi, H. R. Omidvar, M. E., Dragomir, S. S., Khan, M. S., Sesquilinear version of numerical range and numerical radius, Acta Univ. Sapientiae Math., 9(2) (2017), 324-335. https://doi.org/10.1515/ausm-2017-0024
  • Omidvar, M. E., Moradi, H. R., Shebrawi, K., Sharpening some classical numerical radius inequalities, Oper. Matrices, 12(2) (2018), 407-416. https://doi.org/10.7153/oam-2018-12-26
  • Sababheh, M., Moradi, H. R., More accurate numerical radius inequalities (I), Linear Multilinear Algebra, 69(10) (2021). https://doi.org/10.1080/03081087.2019.1651815
  • Safshekan, R., Farokhinia, A., Some refinements of numerical radius inequalities via convex functions, Applied Mathematics E-Notes, 21 (2021), 542-549.
  • Sattari, M., Moslehian, M. S., Yamazaki, T., Some generalized numerical radius inequalities for Hilbert space operators, Linear Algebra Appl., 470 (2015), 216-227. https://doi.org/10.1016/j.laa.2014.08.003
  • Tafazoli, S., Moradi, H. R., Furuichi, S., Harikrishnan, P., Further inequalities for the numerical radius of Hilbert space operators, J. Math. Inequal., 13 (2019), 955-967. https://doi.org/10.48550/arXiv.1907.06003
  • Tapdigoglu, R., New Berezin symbol inequalities for operators on the reproducing kernel Hilbert space, Oper. Matrices, 15(3) (2021), 1445-1460. https://doi.org/10.7153/oam-2021-15-64
  • Tapdigoglu, T., Gürdal, M., Altwaijry, N., Sarı, N., Davis-Wielandt-Berezin radius inequalities via Dragomir inequalities, Oper. Matrices, 15(4) (2021), 1445-1460. https://doi.org/10.7153/oam-2021-15-90
There are 33 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Suna Saltan 0000-0001-8175-0425

Nazlı Baskan 0000-0001-7742-0837

Publication Date March 30, 2023
Submission Date March 18, 2022
Acceptance Date June 22, 2022
Published in Issue Year 2023

Cite

APA Saltan, S., & Baskan, N. (2023). Some refinements of Berezin number inequalities via convex functions. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 72(1), 32-42. https://doi.org/10.31801/cfsuasmas.1089790
AMA Saltan S, Baskan N. Some refinements of Berezin number inequalities via convex functions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. March 2023;72(1):32-42. doi:10.31801/cfsuasmas.1089790
Chicago Saltan, Suna, and Nazlı Baskan. “Some Refinements of Berezin Number Inequalities via Convex Functions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72, no. 1 (March 2023): 32-42. https://doi.org/10.31801/cfsuasmas.1089790.
EndNote Saltan S, Baskan N (March 1, 2023) Some refinements of Berezin number inequalities via convex functions. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72 1 32–42.
IEEE S. Saltan and N. Baskan, “Some refinements of Berezin number inequalities via convex functions”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 72, no. 1, pp. 32–42, 2023, doi: 10.31801/cfsuasmas.1089790.
ISNAD Saltan, Suna - Baskan, Nazlı. “Some Refinements of Berezin Number Inequalities via Convex Functions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72/1 (March 2023), 32-42. https://doi.org/10.31801/cfsuasmas.1089790.
JAMA Saltan S, Baskan N. Some refinements of Berezin number inequalities via convex functions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72:32–42.
MLA Saltan, Suna and Nazlı Baskan. “Some Refinements of Berezin Number Inequalities via Convex Functions”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 72, no. 1, 2023, pp. 32-42, doi:10.31801/cfsuasmas.1089790.
Vancouver Saltan S, Baskan N. Some refinements of Berezin number inequalities via convex functions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72(1):32-4.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.