Research Article
BibTex RIS Cite
Year 2023, , 199 - 215, 30.03.2023
https://doi.org/10.31801/cfsuasmas.1099300

Abstract

References

  • Almahdi, F. A., Bouba, E. M., Tamekkante, M. On weakly S-prime ideals of commutative rings, Analele Stiint. ale Univ. Ovidius Constanta Ser. Mat., 29(2) (2021), 173-186. https://doi.org/10.2478/auom-2021-0024
  • Anderson, D. F., Badawi, A., On n-absorbing ideals of commutative rings, Commun. Algebra, 39(5) (2011), 1646–1672. https://doi.org/10.1080/00927871003738998
  • Anderson, D. D., Bataineh, M., Generalizations of prime ideals, Commun. Algebra, 36(2) (2008), 686-696. https://doi.org/10.1080/00927870701724177
  • Anderson, D., Smith, E., Weakly prime ideals, Houst. J. Math., 29(4) (2003), 831-840.
  • Badawi, A., On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75(3) (2007), 417-429. https://doi.org/10.1017/S0004972700039344
  • Darani, A. Y., Generalizations of primary ideals in commutative rings, Novi Sad. J. Math., 42 (2012), 27-35.
  • Calugareanu, G., UN-rings. J. Algebra its Appl., 15(10) (2016), 1650182. https://doi.org/10.1142/S0219498816501826
  • D’Anna, M., Fontana, M., An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra its Appl., 6(3) (2007), 443–459. https://doi.org/10.1142/S0219498807002326
  • D’Anna, M., Fontana, M., The amalgamated duplication of a ring along a multiplicativecanonical ideal, Ark. Mat., 45(2) (2007), 241-252. https://doi.org/10.1007/s11512-006-0038-1
  • D’Anna, M., Finocchiaro, C. A., Fontana, M., Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra, 214 (2010), 1633-1641. https://doi.org/10.1016/j.jpaa.2009.12.008
  • Gilmer, R. W., Multiplicative Ideal Theory, M. Dekker, 1972.
  • Hamed, A., Malek, A., S-prime ideals of a commutative ring, Beitr. Algebra Geom., 61(3) (2020), 533-542. https://doi.org/10.1007/s13366-019-00476-5
  • Khashan, H. A., Bani-Ata, A. B., J-ideals of commutative rings, Int. Electron. J. Algebra, 29 (2021), 148-164. https://doi.org/10.24330/ieja.852139
  • Mohamadian, R., r-ideals in commutative rings, Turkish J. Math., 39(5) (2015), 733-749. https://doi.org/10.3906/mat-1503-35
  • Tekir, U., Koc, S., Oral, K. H., n-ideals of commutative rings, Filomat, 31(10) (2017), 2933-2941. https://doi.org/10.2298/FIL1710933T
  • Visweswaran, S., Some results on S-primary ideals of a commutative ring, Beitr. Algebra Geom., 63(8) (2021), 1-20. https://doi.org/10.1007/s13366-021-00580-5
  • Yassine, A., Nikmehr, M. J., Nikandish, R., On 1-absorbing prime ideals of commutative rings, J. Algebra its Appl., 20(10) (2021), 2150175. https://doi.org/10.1142/S0219498821501759.
  • Yetkin Celikel, E., Generalizations of n-ideals of Commutative Rings, J. Sci. Technol., 12(2) (2019), 650-657. https://doi.org/10.18185/erzifbed.471609

S-n-ideals of commutative rings

Year 2023, , 199 - 215, 30.03.2023
https://doi.org/10.31801/cfsuasmas.1099300

Abstract

Let $R$ be a commutative ring with identity and $S$ a multiplicatively closed subset of $R$. This paper aims to introduce the concept of $S-n$-ideals as a generalization of $n$-ideals. An ideal $I$ of $R$ disjoint with $S$ is called an $S-n$- ideal if there exists $s\in S$ such that whenever $ab \in I$ for $a,~b\in R,$ then $sa\in \sqrt{0}$ or $sb\in I$. The relationships among $S-n$-ideals, $n$-ideals, $S$-prime and
$S$-primary ideals are clarified. Besides several properties, characterizations and examples of this concept, S-n-ideals under various contexts of constructions including direct products, localizations and homomorphic images are given. For some particular $S$ and $m\in N$, all $S-n$-ideals of the ring $Z_{m}$ are completely determined. Furthermore, $S-n$-ideals of the idealization ring and amalgamated
algebra are investigated.

References

  • Almahdi, F. A., Bouba, E. M., Tamekkante, M. On weakly S-prime ideals of commutative rings, Analele Stiint. ale Univ. Ovidius Constanta Ser. Mat., 29(2) (2021), 173-186. https://doi.org/10.2478/auom-2021-0024
  • Anderson, D. F., Badawi, A., On n-absorbing ideals of commutative rings, Commun. Algebra, 39(5) (2011), 1646–1672. https://doi.org/10.1080/00927871003738998
  • Anderson, D. D., Bataineh, M., Generalizations of prime ideals, Commun. Algebra, 36(2) (2008), 686-696. https://doi.org/10.1080/00927870701724177
  • Anderson, D., Smith, E., Weakly prime ideals, Houst. J. Math., 29(4) (2003), 831-840.
  • Badawi, A., On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75(3) (2007), 417-429. https://doi.org/10.1017/S0004972700039344
  • Darani, A. Y., Generalizations of primary ideals in commutative rings, Novi Sad. J. Math., 42 (2012), 27-35.
  • Calugareanu, G., UN-rings. J. Algebra its Appl., 15(10) (2016), 1650182. https://doi.org/10.1142/S0219498816501826
  • D’Anna, M., Fontana, M., An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra its Appl., 6(3) (2007), 443–459. https://doi.org/10.1142/S0219498807002326
  • D’Anna, M., Fontana, M., The amalgamated duplication of a ring along a multiplicativecanonical ideal, Ark. Mat., 45(2) (2007), 241-252. https://doi.org/10.1007/s11512-006-0038-1
  • D’Anna, M., Finocchiaro, C. A., Fontana, M., Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra, 214 (2010), 1633-1641. https://doi.org/10.1016/j.jpaa.2009.12.008
  • Gilmer, R. W., Multiplicative Ideal Theory, M. Dekker, 1972.
  • Hamed, A., Malek, A., S-prime ideals of a commutative ring, Beitr. Algebra Geom., 61(3) (2020), 533-542. https://doi.org/10.1007/s13366-019-00476-5
  • Khashan, H. A., Bani-Ata, A. B., J-ideals of commutative rings, Int. Electron. J. Algebra, 29 (2021), 148-164. https://doi.org/10.24330/ieja.852139
  • Mohamadian, R., r-ideals in commutative rings, Turkish J. Math., 39(5) (2015), 733-749. https://doi.org/10.3906/mat-1503-35
  • Tekir, U., Koc, S., Oral, K. H., n-ideals of commutative rings, Filomat, 31(10) (2017), 2933-2941. https://doi.org/10.2298/FIL1710933T
  • Visweswaran, S., Some results on S-primary ideals of a commutative ring, Beitr. Algebra Geom., 63(8) (2021), 1-20. https://doi.org/10.1007/s13366-021-00580-5
  • Yassine, A., Nikmehr, M. J., Nikandish, R., On 1-absorbing prime ideals of commutative rings, J. Algebra its Appl., 20(10) (2021), 2150175. https://doi.org/10.1142/S0219498821501759.
  • Yetkin Celikel, E., Generalizations of n-ideals of Commutative Rings, J. Sci. Technol., 12(2) (2019), 650-657. https://doi.org/10.18185/erzifbed.471609
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Hani Khashan 0000-0003-2167-5245

Ece Yetkin Çelikel 0000-0001-6194-656X

Publication Date March 30, 2023
Submission Date April 6, 2022
Acceptance Date September 5, 2022
Published in Issue Year 2023

Cite

APA Khashan, H., & Yetkin Çelikel, E. (2023). S-n-ideals of commutative rings. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 72(1), 199-215. https://doi.org/10.31801/cfsuasmas.1099300
AMA Khashan H, Yetkin Çelikel E. S-n-ideals of commutative rings. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. March 2023;72(1):199-215. doi:10.31801/cfsuasmas.1099300
Chicago Khashan, Hani, and Ece Yetkin Çelikel. “S-N-Ideals of Commutative Rings”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72, no. 1 (March 2023): 199-215. https://doi.org/10.31801/cfsuasmas.1099300.
EndNote Khashan H, Yetkin Çelikel E (March 1, 2023) S-n-ideals of commutative rings. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72 1 199–215.
IEEE H. Khashan and E. Yetkin Çelikel, “S-n-ideals of commutative rings”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 72, no. 1, pp. 199–215, 2023, doi: 10.31801/cfsuasmas.1099300.
ISNAD Khashan, Hani - Yetkin Çelikel, Ece. “S-N-Ideals of Commutative Rings”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72/1 (March 2023), 199-215. https://doi.org/10.31801/cfsuasmas.1099300.
JAMA Khashan H, Yetkin Çelikel E. S-n-ideals of commutative rings. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72:199–215.
MLA Khashan, Hani and Ece Yetkin Çelikel. “S-N-Ideals of Commutative Rings”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 72, no. 1, 2023, pp. 199-15, doi:10.31801/cfsuasmas.1099300.
Vancouver Khashan H, Yetkin Çelikel E. S-n-ideals of commutative rings. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72(1):199-215.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.